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Nature of diffraction Hierarchy of the character of light

- Quantum mechanics

» Photon/quanta

» Probability density

» Wave function representing particles

- Physical optics
* Interference

» Diffraction

» Polarization

- Geometrical optics

» Ray tracing with wavelength short
» Reflection/refraction

» Radiometry

» Aberrations

» Optical Design

Quantum Optics

Electromagnetic Optics (Vector)

Wave Optics (Scalar)

Ray Optics

Ref: Fundamental of Photonics, B.E.A. Saleh and M. C. Teich
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From Grimaldi to Maxwell

Descartes (1596-1650) e Huygens (1629-1695)

e Considered the nature of light o Wave Pf?Pagati(?n of light
e Polanization of light

e Light was pressure transmitted through the aether o Laws of reflection and refraction

Galileo (1564-1642) . Yo%ng (t1h773-1829)
e Wave theory

e Experimental methods o Interference (colors of thin films)

Snell (1621) ® Fresnel (1788-1827)

e Refraction of light at interface e Confirmed wave theory of propagation and diffraction
e Influence of earth’s motion of light propagation
® Fermat (1 601-1 665) e Interference of polarized rays of light (light no
e “Principle of Least Time” longitudinal)
e Refraction laws verified e Reflection and polarization

e Father Grimaldi (1618-1663) . Mai;‘;f’f{h §§effifr§7g)

e Theoretically unified electricity and magnetism

e Note: diffraction 1s the bending of light not caused e Showed possibili - -
: possibility of electromagnetic waves propagating
by refraction with velocity that could be calculated

e Newton (1 642-172 7) e Electrostatics, magnetostatics , induction, EM waves and
optics unified under single theory

. 5;:;;"’;?“1 baﬂ}; faht;ﬁ’f °f,°°tl°f 1 e Lord Rayleigh (scientific work 1899-1920)
- e light could be split up mto colors o Investigated waves propagation and scattering

¢ ]?:Xperim.er}t_s V‘C}th prisms and li_ght and . e Examined scattering from small particles
refrangibility ” or bending of light at an interface e Studied wave mteractions with periodic structures

e First noticed “diffraction”




Definition of diffraction

“diffractio”, Francesco Grimaldi (1600s)

The effect is a general characteristics of wave phenomena occurring
whenever a portion of a wavefront, be it sound, a matter wave, or light,

IS obstructed in some way.

. Diffraction is any deviation from geometric optics that results from the obstruction of a light wave, such as
sending a laser beam through an aperture to reduce the beam size. Diffraction results from the interaction of

light waves with the edges of objects.

* The edges of optical images are blurred by diffraction, and this represents a fundamental limitation on the
resolution of an optical imaging system.

* There is no physical difference between the phenomena of interference and diffraction, both result from the
superposition of light waves. Diffraction results from the superposition of many light waves, interference
results from the interference of a few light waves.




Figure 10.1 The shadow of a hand holding a dime, cast directlyon
4 X 5 Polaroid A.S.A. 3000 film using a He-Ne beam and no lenses. |

Hecht, (Photo by E.H.)

Optics,
Chapter 10



Regimes of Diffraction Optical Elements

d>A
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Micro lens
DOE lens
Hybrid lens
BLU

LED lighting
Beam shaping

Flexible BLU
Beam shaping
LED lighting
Resonance grating
WDM filters

DFB, DBR, ...
PhC device
Silicon device

d<A

o

Super lens
CDEW

Metal wire

SPP waveguide
Nano-photonics
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d < }\d Light transmission through a metallic subwavelength hole
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Ag film, hole diameter=250nm,
groove periodicity=500nm,
groove depth=60nm, film thickness=300nm

Science, Vol. 297, pp. 820-822, 2 August 2002.




Regimes of Diffraction

Full Wave Rayleigh-Sommerfeld Fresnel Fraunhofer
Equations | & Fresnel-Kirchoff | (near field) - (far field) ]
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=4/ Solutions "%/ !j . ‘ d
| ‘:

| | | Micro systems |

356 nm 966 ,:LIIT‘I ::l_E. mm (x,y)
1550 nm 791 pm 2.5 mm

Examples: 50 pm Aperture, 200 um Observation, 2=85( nm, A=1350 nm

Fraunhofer Approximation - Assume planar wavefronts
Fresnel Approximation - Assume parabolic wavefronts

Rayleigh-Sommerfeld Formulation - Spherical wavefronts



Typical diffraction phenomena

Fresnel diffraction

Grating: penodic structure — diffraction orders
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Guoimaldi, 1665
Huygens, 1678
Fresnel 1818
Kirchhoff, 1882

described the phenomenon
wave theory of hight
mtuitive explanation
mathematical formulation




Handbook of Optics, Volume I: Fundamentals, Techniques, and Design
Optical Society of America, McGraw-Hill, Inc.

Chapter 3. Diffraction A S. Marathay 3.1
3.1 Glossary [ 3.4

3.2, Inmtroduction [ 3.J

3.3, Light Waves [ 3.2

34,  Huygens-Fresnel Construction / 3.4

3.5 Cylindrical Wavefront [ 313

.60 Mathematical Theory of Diffraction [/ 3./9

A7, Vector Diffraction [ 3.27

A8, References [ 330

The electric field E obeys the wave equation in free space or a vacuum

1 5°E
vc——”—:u (1)
di

where ¢ is the velocity of light in a vacuum. Each cartesian component E, (j=ux, v, z)
obeys the equation and, as such, we use a scalar function y«(r, 1) to dre:m:rtﬁ its solutions,
where the radius vector r has components, ¥ = ix + |y + kz.

Fourier transform on time, #(r.f) = | é(r, v) exp (—i2nvt) dv (2)

The spectrum W, v) obeys the Helmholtz equation, Vol + kil =0 (3)

(%]

with the propagation constant kK =2x/A =2nv/c=w/c



As a solution of the Helmholtz equation, a plane wave being harmonic in time as well as in space,

fi(r.t)=Acos(k-r— wr)

For convenience of operations, a complex form frequently is used. For example,

ir,r)=Aexp[ilk-r— wr)]

wivetTonts

- . - . | at i
An expanding spherical wave may be written in the form, “ i3
A /
fi(r, 1) =—cos (kr — wt)
r
A
Fi i
.
| Ill' |IIIr IIII
| [ [ '
I [ [ ]
S . : Plane-wave . s
I || ! o |. Lr’/
Spherical~~) | - \ /| ~—Spherical
wave v wave
Ly Lo

FIGURE 1 Experimental layout to describe the notation used for spherical and plane waves.
S5: pinhole source. L, L.: lenses. §°: image.



HUYGENS-FRESNEL CONSTRUCTION

Without the benefit of a fundamental theory based on Maxwell's equations and the
subsequent mathematical development, Huygens sought to describe wave propagation in
the days before Maxwell. Waves are characterized by constant-phase surfaces, called
wavefronts. If the initial shape at time ¢ of such a wavefront is known in a vacuum or in any
medium, Huvgens proposed a geometrical construction to obtain its shape at a later time,
t+ Ar. He regﬂrded each point of the initial wavefront as the origin of a new disturbance
that propagates in the form of secondarv wavelets in all directions with the same speed as
the speed v of propagation of the initial wave in the medium. These secondary wavelets of
radii v Ar are constructed at each point of the initial wavefront. A surface tangential to all
these secondary wavelets, called the envelope of all these wavelets, is then the shape and
position of the wavefront at time r4+ Ar. With this construct Huveens explained the
phenomena of reflection and refraction of the wavefront. To explain the phenomenon of
diffraction, Fresnel modified Huvgens' construction by attributing the property of mutual
interference to the secondary wavelets (see Chap. 2). The modified Huygens construction
is called the Huygens-Fresnel construction. With further minor modifications it helps
explain the phenomenon of diffraction and its various aspects, including those that are not
so intuitively obvious.

From this concept of the Huygens-Fresnel construction,
in this class we will develop some mathematical formulas, such as,

Fresnel-Kirchhoff diffraction formula

W(P)= -{ﬁj J f Iexp ir’kr}

exp (1ks)
&

[cos (n, r) —cos (n, 5)]

L
Rayleigh-Sommerfeld diffraction formula Po

o=~ (3) |22

exp (iks)
&

cos (1, 8) d8




Huygens’ wave front construction

Every point on a wave front is a source of secondary wavelets.
I.e. particles in a medium excited by electric field (E) re-radiate in all directions
I.e. in vacuum, E, B fields associated with wave act as sources of additional fields

New wavefront
Construct the wave front
tangent to the wavelets

wavettonts

Secondary
wavelet
r=cAt=

secondary wavelets

Given wave-front at t What about —r direction?

(n-phase delay when the secondary
Allow wavelets to evolve wavelets, Hecht, 3.5.2, 3nd Ed)

for time At




Huygens-Fresnel principle

’————~

- ~
“Every unobstructed point of a wavefront, at a given instant in time,
serves as a éoyrce of secondary wave)éts (with the same frequency

as that of the primary-wave)— — =~ _ - =~ 7 = = < _
The amplitude of the'optical field at“any point beyond is the Superposition

of all these waveléts (considering their amplitude and relative phase).”
~ -

-

_—

~-——_—

Huygens’s principle:
By itself, it is unable to account for the details of the diffraction process.
It is indeed independent of any wavelength consideration.

Fresnel’'s addition of the concept of interference



HUYGENS-FRESNEL CONSTRUCTION

The Huygens—Fresnel principle. Each point on a wavefront generates a spherical wave.

Wavefront
Wavefront

The total contribution to the disturbance at P is expressed as an area integral over the
primary wavefront,

W(P)=A exp [—ilwt — k)] J'J exp;{r‘ks}ﬁ:{x}dg )

R

Huygens’ Secondary wavelets on the wavefront surface S



HUYGENS-FRESNEL CONSTRUCTION : Fresnel Zones

The total contribution to the disturbance at P is expressed as an area integral over the
primary wavefront,

xp [—i(wt — kn,)] [ [ exp (ik
P iG] || = D kz) ds (8)
Fa E 5
/ \
Obliquity factor:
Spherical wave from source P, unity where x=0 at C

zero where y=n/2 at high enough zone index

Huygens’ Secondary wavelets on the wavefront surface S

FIGLURE 2 Fresnel zone construction. Fy: point source. §: wavefront. ry: radius of
the wavefront b: distance CP. s: distance QP. (Afier Born and Wolf'.)



HUYGENS-FRESNEL CONSTRUCTION : Fresnel Zones

p(py=a SR K] [T W) g g
0

- ZZ

5 23
The average distance of successive zones from P differs by A/2 -> half-period zones.

Thus, the contributions of the zones to the disturbance at P alternate in sign,

WP) =t — o+ — i+ s — s+

where y; stands for the contribution of the jth zone, j=1,2,3,... The contribution of
each annular zone is directly proportional to the zone area and is inversely proportional to
the average distance of the zone to the point of observation F. The ratio of the zone area
to its average distance from P is independent of the zone index j. Thus, in summing the
contributions of the zones we are left with only the variation of the obliquity factor, K(y ).
To a good approximation., the obliguity factors for any two adjacent zones are nearly equal
and for a large enough zone index j the obliquity factor becomes negligible. The total
disturbance at the point of observation P may be approximated by

W(P)=1/2(¢, £4,)  (1/2 means averaging of the possible values,

more details are in 10-3, Optics, Hecht, 2" Ed)
For an unobstructed wave, the last term . =0.

U(P)=1/24,

A _ y
=—pAhexp{—ilot —k(r+b) —m/2]} Therefore, one can assume that
v the complex amplitude of exp (iks)/s
Whereas, a freely propagating spherical wave from the source P, to P is

[1/A exp (—im/2)] exp (tks)/s
exp {—t|wr — k(ro+ b)]} _ 1 eXp(IkS)
i1 S

w(F)=

r,+ b



HUYGENS-FRESNEL CONSTRUCTION : Diffraction of light from circular apertures and disks

(@) The first two zones are uncovered,

Y(FP) =1, —i=0! (consider the point P at the on-axis P)
since these two contributions are nearly equal.

(b) The first zone is uncovered if point P is placed father away,

w(P) =, \
which 1s twice what it was for the unobstructed wave! - Babinet principle

(c) Only the first zone is covered by an opaque disk, /l.if_‘,-(P} =+ u}(,ﬁ.{F} = l‘.ytw(;:r}
w(P}Z_!ﬁJ_'_!ﬁJ_d‘—t_'_ s — g+ 00 = _Ifl.fff-

which is the same as the amplitude of the unobstructed wave.

_

FIGURE 4 The redrawn zone structure for use with an off-axis point P*. (Afier Andrews.”) FIGURE 6 B - ng the '
* on patterns from

wernd Variation of on-axis irradiance :
circular apertures



HUYGENS-FRESNEL CONSTRUCTION
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After the Huygens-Fresnel principle

Fresnel’s shortcomings :

He did not mention the existence of backward secondary wavelets,

however, there also would be a reverse wave traveling back toward the source.
He introduce a quantity of the obliquity factor, but he did little more than
conjecture about this kind.

exp[—:‘{mr—km}]H exp “kS}K{I}:fS
5

Fa

W(P)=A

5

Gustav Kirchhoff : Fresnel-Kirhhoff diffraction theory

A more rigorous theory based directly on the solution of the differential wave equation.
He, although a contemporary of Maxwell, employed the older elastic-solid theory of light.
He found K(y) = (1 + cos@#)/2. K(0) = 1 in the forward direction, K(z) = 0 with the back wave.

sl L

l exp (iks)
5

[cos (2, ) —cos (n, 5)] dS

Arnold Johannes Wilhelm Sommerfeld : Rayleigh-Sommerfeld diffraction theory
A very rigorous solution of partial differential wave equation.
The first solution utilizing the electromagnetic theory of light.

l exp (iks)
5

w=—(7)]] lexp,{.m cos (1, 5) dS



Kirchhoff's theorem

Starting point: Field known on a closed surface §.
What is the field in a point P, inside §¢

%+ Scalar approximation (polanzation effects ignored)

Gauss: {’A‘ds = ‘.vuﬂmﬁr

S v
If A=GVU-LVG (U(r) and G{x) arbitrary scalar functions)

Green IT: ‘HG?U —UVG)-dS = J{sz[f —Lr?:G}ﬂT'E-'
S v

-iirt

Assume now that U and G satisfy the homogeneous wave equation and that their time dependence is ~ e

yr 13U

‘F'U——:—: =_A.-:Li" . .
< o = [leviu-vviekv=0
e 1 0°G 3 -
ViG=—=—=-kG oo 7
el | kz :.:_ ¥

Fresnel-Kirchhoff diffraction formul:

W(P)= —{E) ”le’{p (Whr) |1 €52 W) (e (i, ) — cos (n, 5)] dS
2A r s
A
r
Rayleigh-Sommerfeld diffraction formula Pf
0
i, D (ik o (ik
w(P)= —(§) J'j exp-fr ) || €xp (iks) cos (r, 5) dS
A




Fresnel diffraction

Assume: Z =2 XV Xp Vg

” — ‘” (U =0 ontade the aperture)
E —

Fresnel's approximation:

In the exponent:

I ; W2 f .
r=yz +ln-x) +(n- )

1 i II:I — .'-I.'l..'l : 1 |"'. _].-':l — _]I.-l"-l :i|

=Alea ) tal

§ 1 b
| fl+x = 1+:x|
\ 37

In the denomunator: r — g

¥ Apertyre Mo

_ETI: -4

- = = i 3 a2
U(Iua}’q}) = - IJU{J‘I:J’J EE[{IFI]} ) ] dxydy,




Fraunhofer diffraction

Fraunhofer's approximation:

1K
-
e

.I: [[1’“ - 1'|: + [L."'J _.J"'.J:] =

Pt | =0
n.||='5'

[f}ﬁ +y,0 ) +lx’ -:-.1.',!1.|—

2xgx, + yoy, J]

=A _” Ulx,.y,) ) dx,dy,

ik &% T_[;;;—;,ﬁ]
— g
P |

LN x5,3) 15 given by

the Fourier transform of L{x,;)

Fourier optics

kit +2)
f I

|

Fresnel

(near field)

D

~ 1 cm
Ao~ 1 lm
~ 100 m

Fraunhofer
(far field)




Examples of Founer transforms

Function F-transform Function F-transform
DELTA  FUNCTION .
i ISOSCELES [E-in 3 }
| CONST. THIhHGLEZ& .
—_—
= - 'E X
£ %
i i GAUSSI&N ' GAUSSIAN
Ho RECTANGULAR ; Sin ) I
FUNCTION 1 q
£ E
3 ' X
2-0 RECTANGULAR | . Sin
FUNCTION =7 | " 7
L .
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