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In cylindrical coordinates, the electric field is given by

For nonmagnetic media, the electric and magnetic fields 
in frequency space satisfy the wave equation,

The scalar solutions of the wave equations 
satisfying the necessary boundary conditions take the form,

outside:  > R )

inside :  < R )

Hm : Hankel functions of the first kind

Jm : Bessel functions of the first kind

Plot of Bessel function of the second kind 

Jm (x)

Ym (x)

Plot of Bessel function of the first kind 

Hm (x) = Jm (x) + iYm (x)



Bessel's Differential Equation is defined as:

The solutions of this equation are called Bessel Functions of order n.

Two sets of functions:  
the Bessel function of the first kind  
the Bessel function of the second kind (also known as the Weber Function)  

Hankel Function:

the Hankel function of the first kind and second kind, 
prominent in the theory of wave propagation, are defined as 

For large x,  

Modified Bessel Function:

Bessel 1st and 2nd Functions:

For large x,  

For small x,  

NOTE : Bessel functions and Hankel functions

Recurrence Relation:



Continuity of the tangential field components at  = R gives the dispersion relation,
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(silver nanorod)

The m=0 fundamental plasmon mode exhibits a unique behavior of 

: purely imaginary

All higher-order modes exhibit a cutoff as

The m=0 field outside the wire becomes tightly localized on a scale of R around the metal surface, 
leading to a small effective transverse mode area that scales like confined well below the diffraction limit!

The scalar solutions of the wave equations satisfying the necessary boundary conditions take the form,

outside:  > R )

inside :  < R )

For nonmagnetic media, the electric and magnetic fields in frequency space satisfy the wave equation,



Setting the determinant of the above matrix equal to zero (det M=0) immediately yields the dispersion relation,

For the special case a TM mode ( Hz = 0) with no winding m=0 (fundamental mode).

(TM mode, Hz = 0, with m = 0  ai = 0   E = 0)

Continuity of the remaining tangential field components Ez and H at the boundary requires that

The fields themselves are given by

In the limit of where Im, Km are modified Bessel functions
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ẑ

When 
(nanoscale-radius wire)
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Note that the TM, fundamental mode ( E = 0,  Hz = 0 ) on a nanorod was given by

In the eikonal (WKB) approximation (slowly varying in z direction), this field on a nanotip may have the form

where r is a two-dimensional (2D) vector in the xy plane and A(z) is a slow-varying preexponential factor.

where n(z) is the effective surface index of the plasmonic waveguide at a point z, which is determined by the equation

 (eikonal approximation?) 
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In the limit of

The dispersion relation obtained from the boundary conditions is,

In the limit of

d = 1 (dielectric) 

m = 2 (metal) 
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The SPP electric fields are found from the Maxwell equations in eikonal (WKB) approximation in the form:

For a nanorod

For a nanotip
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To determine the preexponential A(z), 
we use the energy flux conservation in terms of 
the Pointing vector integrated over the normal (xy) plane, 

 ( ) ;  constantR z R

 ( );  not fixedR R z

Intensity Energy density
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The SPP electric fields are found from the Maxwell equations in eikonal (WKB) approximation in the form:

For a nanotip
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 ( );  not fixedR R z

E

Ez

Plot the equations!
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For a thin, nanoscale-radius wire 

Dispersion relation of metal nanotips

0k nk

d

m

For ,  the phase velocity / ( ) 0pv c n z  and the group velocity  / ( ) / 0gv c d n d  

The time to reach the point R = 0 (or z = 0)

The eikonal parameter (also called WKB or adiabatic parameter) is defined as

For the applicability of the eikonal (WKB) approximation, 
it necessary and sufficient that

At the nanoscale tip of the wire,

0( )k n z k


