
(Second Lecture) Techno Forum on Micro-optics and Nano-optics Technologies

Guided-mode resonance (GMR) effect for filtering devices in LCD display panels

송 석 호, 한양대학교 물리학과, http://optics.anyang.ac.kr/~shsong

1. What is the GMR effect of waveguide gratings?

Kev

notes

- 2. What is the photonic band structure (or, dispersion relation)?
- 3. What can we play with GMR filters for display?
- 4. What is the practical difficulties to be solved in GMR applications?

Fabrication of Transmission Color Filters Using Silicon Subwavelength Gratings on Quartz Substrates

Yoshiaki Kanamori, Masaya Shimono, and Kazuhiro Hane Department of Nanomechanics, Tohoku University

(%) 80-

100

60-41

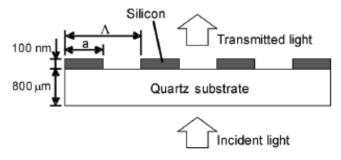
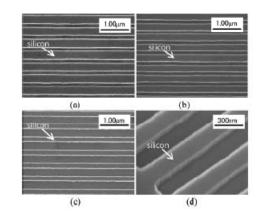



Fig. 1. Schematic of the fabricated color filter design. The grating period and width are defined as Λ and a, respectively.

Fransmittance oolor (Y)× 400 500 600 700 800 Wavelength (nm) (a) 100 functior Mii (%) 120µm 80 Transmittance matching 60 40 y(3) color r 2 400 500 600 700 800 Wavelength (nm) (b) 100 120µm ansmittance (%) ching funct 80 K 60 color 400 500) 600 Wavelength (nm) 700 800 S (c) 100 (%) 80-60-40-20 600 700 800 400 500 Wavelength (nm)

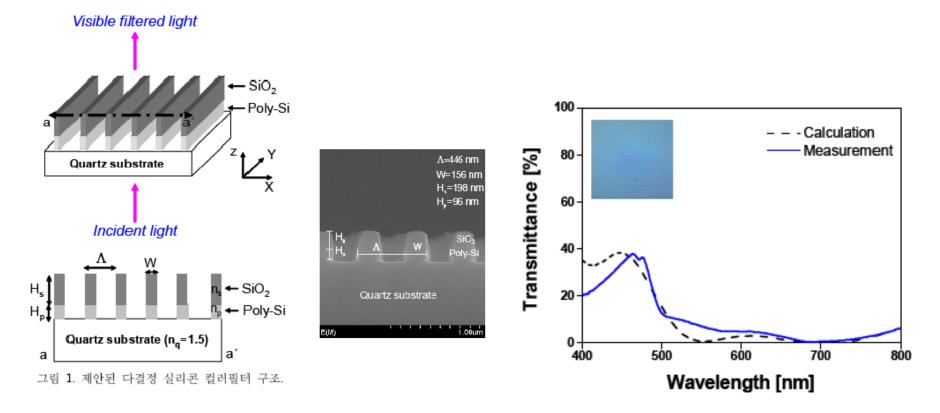
120µm

Fig. 2. SEM photographs of the fabricated gratings for (a) red ($\Lambda = 400$ nm, a = 279 nm), (b) green ($\Lambda = 350$ nm, a = 231 nm), and (c) blue ($\Lambda =$ 440 nm, a = 177 nm) filters. (d) Oblique view of the fabricated grating for the blue filter at the edge.

Fig. 4. Transmittances measured as a function of incident light wavelength for (a) red, (b) green, and (c) blue filters. (d) Transmittance of the bare SOQ substrate as a function of incident light wavelength. (Color version available online at http://ieeexplore.ieee.org.)

(d)

《연구논문》Hankook Kwanghak Hoeji, Volume 19, Number 1, February 2008


광파장 이하의 주기를 갖는 다결정 실리콘 격자 기반의 컬러필터

윤여택·이홍식·이상신[†]

광운대학교 전자공학과 ② 139-701 서울특별시 노원구 월계동 447-1

김상훈 · 박주도 · 이기동

엘지전자기술원 소자재료연구소

High angular tolerant color filter using subwavelength grating

Byoung-Ho Cheong,¹ O. N. Prudnikov,¹ Eunhyoung Cho,² Hae-Sung Kim,² Jaeho Yu,¹ Young-Sang Cho,¹ Hwan-Young Choi,^{1,a)} and Sung Tae Shin¹ ¹LCD R & D Center, Samsung Electronics Co., Nongseo-dong, Yongin-si, Gyeonggi-do 446-711,

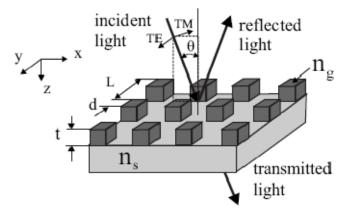


FIG. 1. Schematic geometry of subwavelength 2D grating structure.

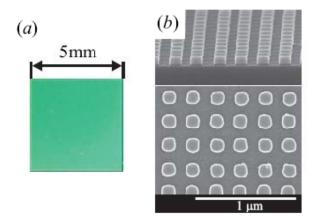


FIG. 4. (Color) (a) Photographic color image and (b) scanning electron microscope image of fabricated subwavelength grating slab.

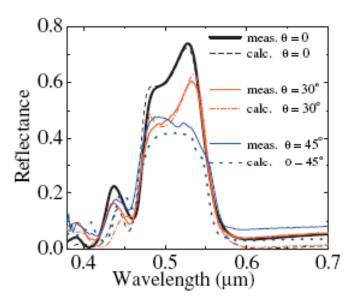


FIG. 5. (Color) Comparisons of measured and calculated reflectance curves with respect to different incident angles θ (unpolarized light).

Silicon-Layer Guided-Mode Resonance Polarizer With 40-nm Bandwidth

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson

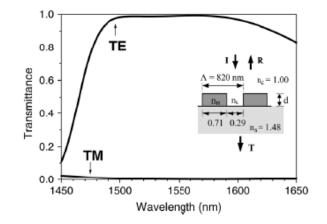


Fig. 2. Calculated spectral response of the designed GMR polarizer for TMand TE-polarizations. The parameters are as follows: Thickness d = 500 nm; refractive indices $n_H = 3.48$, $n_L = 1.00$, $n_c = 1.00$, $n_s = 1.48$; grating period $\Lambda = 820$ nm; filling factor f = 0.71; incident angle $\theta_{int} = 0^\circ$ (normal incidence).

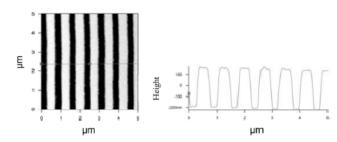


Fig. 4. AFM image of the polarizer and its profile quantifying the etch depth as 355 nm.

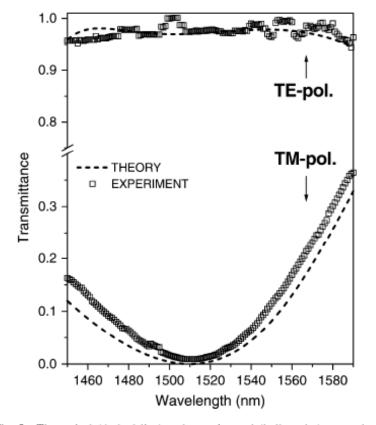
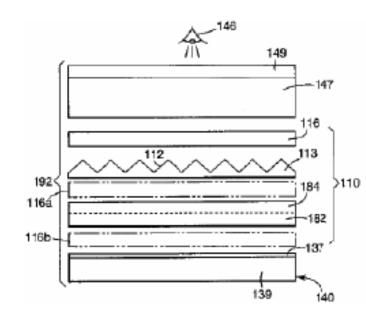



Fig. 5. Theoretical (dashed line) and experimental (hollow dot) spectral response of the fabricated GMR device for both TE- and TM-polarized incident waves. The experimental data is corrected for a $\sim 4\%$ reflection at the backside of the substrate. Note that the vertical axis is divided.

Reflective polarizer display, US 5828488 (1995.03.10), 3M (St. Paul, MN)

DBEF와 편광필름의 투과도(532nm) (투과단위:uW)

Input	БmW							
	DBEF(1)+532nm(1)		DBEF(-)+532nm(l)		DBEF(-)+532nm(-)		DBEF(I)+532nm(-)	
각도	투과	투과효율	투과	투과효율	투과	투과효율	투과	투과효율
0	4230	0,846	40	0,008	4420	0,884	130	0,026
5	4230	0,846	39	D,0078	4420	0,884	17	0,0034
10	4190	0.838	620	0.124	4350	0.87	13	0.0026
15	4190	0,838	47	D,0094	4420	0,884	425	0,085
20	4220	0,844	47	D.0094	4440	0,888	4.3	0,00086
25	4150	0,83	33	0,0066	4500	0,9	25	0,005
30	4090	0,818	27	D,0054	4400	0.88	46	0,0092
35	4030	0.806	95	0.019	4200	0.84	9.5	0.0019
40	3950	0.79	44	D.0088	4600	0.92	11.7	0.00234
45	3810	0,762	2,3	0,00046	4340	0,868	48	0,0096
50	3630	0,726	18	0,0036	4350	0,87	80	0,016
55	3400	0,68	26	0,0052	4300	0,86	27	0,0054
60	3140	0.628	9	D.0018	4550	0.91	60	0.012
65	2760	0.552	9	0.0018	4350	0.87	14	0.0028
70	2320	0,464	3,2	0,00064	2800	0,56	9,6	0,00192
75	1860	0,372	7	0,0014	2700	0,54	52	0,0104
80	1130	0,226	40	0,008	2100	0,42	29	0,0058
85	5050	1,01						
		+532nm(l))+532nm(l)	편광필름(-))+532nm(-)	편광필름())	
각도	투과	투과효율	투과	투과효율	투과	투과효율	투과	투과효율
0	<u>루고</u> 3650	<u>투과효율</u> 0.73	<u>루고</u> 3,03	<u>투과효율</u> 0,000606	투과 3590	<u>투과효율</u> 0.718	<u>루과</u> 3	<u> 투과효율</u> 0,0006
0 5	<u>투과</u> 3650 3540	<u>투과효율</u> 0.73 0.708	<u>투과</u> 3,03 3,31	투과효율 0,000606 0,000662	투과 3590 3600	<u>부과효율</u> 0,718 0,72	투과 3 2,84	<u>투과효율</u> 0,0006 0,000568
0 5 10	투과 3650 3540 3520	<u>투과효율</u> 0.73 0.708 0.704	<u>투과</u> 3,03 3,31 3,31	<u>투과효율</u> 0,000606	투과 3590 3600 3640	<u>투과효율</u> 0,718 0,72 0,728	<u>루과</u> 3 2,84 2,84	<u> 투과효율</u> 0,0006
0 5 10 15	투과 3650 3540 3520 3620	<u>투과효율</u> 0.73 0.708 0.704 0.724	투고 3,03 3,31 3,31 3,31 3,34	<u>투과효율</u> 0,000606 0,000662 0,000662 0,000668	부과 3590 3600 3640 3690	<u>투과효율</u> 0,718 0,72 0,728 0,738	루과 2,84 2,84 2,78	<u>부과효율</u> 0,0006 0,000568 0,000568 0,000556
0 5 10 15 20	투과 3650 3540 3520	<u>투과효율</u> 0.73 0.708 0.704 0.724 0.74	투고 3,03 3,31 3,31 3,34 3,34 3,32	부과효율 0,000606 0,000662 0,000662 0,000668 0,000664	투과 3590 3600 3640	<u>투과효율</u> 0,718 0,72 0,728 0,738 0,744	루과 2,84 2,84 2,78 2,77	<u>루과효율</u> 0,0006 0,000568 0,000568
0 5 10 15	투과 3650 3540 3520 3620	<u>투과효율</u> 0.73 0.708 0.704 0.724	투고 3,03 3,31 3,31 3,31 3,34	<u>투과효율</u> 0,000606 0,000662 0,000662 0,000668	부과 3590 3600 3640 3690	<u>투과효율</u> 0,718 0,72 0,728 0,738	루과 2,84 2,84 2,78	<u>부과효율</u> 0,0006 0,000568 0,000568 0,000556
0 5 10 15 20 25 30	<u>투과</u> 3650 3540 3520 3620 3700 3600 3710	<u>루과효율</u> 0.73 0.708 0.704 0.724 0.74 0.72 0.742	부과 3,03 3,31 3,31 3,34 3,34 3,32 3,46 3,4	부과효율 0,000606 0,000662 0,000662 0,000668 0,000664 0,000692 0,000692	투과 3590 3600 3640 3690 3720	루과효율 0,718 0,72 0,728 0,738 0,738 0,744 0,75 0,754	루과 2,84 2,84 2,78 2,77 2,83 2,81	<u>투과호율</u> 0,000568 0,000568 0,000556 0,000554
0 5 10 15 20 25 30 35	<u> 早</u> よ 3650 3540 3520 3620 3700 3600 3710 3580	부과효율 0.73 0.708 0.704 0.724 0.74 0.74 0.74 0.72 0.742 0.716	부과 3,03 3,31 3,31 3,34 3,34 3,32 3,46	부과호율 0,000606 0,000662 0,000662 0,000668 0,000664 0,000692 0,000692	<u>루과</u> 3590 3640 3690 3720 3720 3750 3770 3810	투과효율 0,718 0,728 0,728 0,728 0,738 0,744 0,754 0,754 0,762	루과 2,84 2,84 2,78 2,77 2,83	<u> </u>
0 5 10 15 20 25 30	<u>투과</u> 3650 3540 3520 3620 3700 3600 3710	<u>루과효율</u> 0.73 0.708 0.704 0.724 0.74 0.72 0.742	부과 3,03 3,31 3,31 3,34 3,34 3,32 3,46 3,4	부과효율 0,000606 0,000662 0,000662 0,000668 0,000664 0,000692 0,000692	<u>투과</u> 3590 3600 3640 3690 3720 3750 3750 3770	루과효율 0,718 0,72 0,728 0,738 0,738 0,744 0,75 0,754	루과 2,84 2,84 2,78 2,77 2,83 2,81	부과호율 0,000568 0.000568 0.000556 0,000556 0,000554 0.000566 0,000562
0 5 10 15 20 25 30 35	<u> 早</u> よ 3650 3540 3520 3620 3700 3600 3710 3580	부과효율 0.73 0.708 0.704 0.724 0.74 0.74 0.74 0.72 0.742 0.716		부과호율 0,000606 0,000662 0,000662 0,000668 0,000664 0,000692 0,000692	<u> 早</u>	투과효율 0,718 0,728 0,728 0,728 0,738 0,744 0,754 0,754 0,762	루과 3 2,84 2,78 2,77 2,88 2,81 2,81 2,8	<u> </u>
0 5 10 20 25 30 35 40	<u> 早</u> よ 3650 3540 3520 3620 3700 3600 3710 3580 3460	부과효율 0.73 0.708 0.704 0.724 0.74 0.74 0.72 0.742 0.742 0.716 0.692	- - 3.03 3.31 3.31 3.34 3.32 3.46 3.46 3.49 3.47	부과호율 0,000606 0,000662 0,000662 0,000668 0,000664 0,000692 0,000692 0,000698 0,000698	<u> 早</u>	투과효율 0,718 0,728 0,738 0,738 0,744 0,755 0,754 0,762 0,77	루과 3 2,84 2,84 2,78 2,77 2,83 2,81 2,8 2,8 2,8 2,9	<u> </u>
0 5 10 20 25 30 35 40 45 50	투과 3650 3540 3620 3620 3700 3600 3710 3580 3460 3200	부과호출 0.73 0.708 0.704 0.724 0.74 0.74 0.74 0.742 0.742 0.742 0.742 0.642 0.642		<u>早辺遠麗</u> 0,000606 0,000662 0,000668 0,000668 0,000692 0,000698 0,000698 0,000698 0,000694 0,000696	<u> 早</u>	투과호물 0,718 0,728 0,738 0,744 0,75 0,754 0,762 0,776 0,778 0,778 0,778	루과 3 2,84 2,78 2,77 2,83 2,81 2,8 2,9 2,9 2,96 2,96	<u> 早과 2 音</u> 0,0006 0,000568 0,000556 0,000556 0,000554 0,000562 0,000562 0,00056 0,00056 0,00058 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,000 0,0
0 5 10 25 30 35 40 45 50 55	早辺 3650 3540 3520 3620 3700 3600 3710 3580 3480 3200 3210 3210 3010	부과호출 0.73 0.708 0.704 0.724 0.74 0.74 0.742 0.742 0.742 0.716 0.692 0.64 0.642 0.602	早辺 3,03 3,31 3,34 3,34 3,34 3,46 3,46 3,49 3,49 3,49 3,49 3,49 3,49 3,49 3,49 3,54 3,58 3,57	<u>早ご言書</u> 0,000606 0,000662 0,000662 0,000668 0,000692 0,000698 0,000698 0,000698 0,000696 0,000696 0,000696 0,000696 0,000696	<u> 早</u>	부과호율 0,718 0,728 0,738 0,744 0,755 0,754 0,754 0,752 0,759 0,778 0,786 0,786	手 과 3 2,84 2,84 2,78 2,77 2,83 2,81 2,8 2,93 2,93 2,96 3,06	<u> </u>
0 5 10 20 25 30 35 40 45 50 55 60	早辺 3650 3540 3520 3600 3700 3600 3710 3580 3480 3280 3210 3210 3210 3010 2660	부과효율 0.73 0.708 0.704 0.724 0.742 0.742 0.742 0.742 0.742 0.6892 0.642 0.642 0.602 0.532	- - 3.03 3.31 3.31 3.34 3.34 3.34 3.46 3.46 3.49 3.47 3.48 3.58 3.58 3.58 3.57 3.63 -	早ご言書 0,000606 0,000662 0,000662 0,000664 0,000692 0,000692 0,000693 0,000694 0,000693 0,000694 0,000694 0,000694 0,000694 0,000694 0,000716 0,000714 0,000726	<u> 早</u>	早 <u>과 宣暑</u> 0,718 0,729 0,728 0,728 0,738 0,744 0,755 0,754 0,754 0,775 0,775 0,778 0,778 0,786 0,792 0,792		<u> </u>
0 5 10 20 25 30 35 40 45 50 55 60 65	早止 3650 3540 3520 3600 3700 3600 3710 3580 3480 3200 3210 3210 3210 3210 2660 2370	부과효율 0.73 0.708 0.704 0.724 0.742 0.742 0.742 0.742 0.716 0.692 0.642 0.642 0.632 0.632 0.632	- - 3.03 3.31 3.31 3.34 3.34 3.32 3.46 3.49 3.49 3.49 3.49 3.55 3.58	早ご言書 0,000606 0,000662 0,000662 0,000664 0,000692 0,000692 0,000692 0,000698 0,000698 0,000694 0,000696 0,000696 0,000696 0,000696 0,000714 0,000726 0,000718	<u> 早</u>	투과효율 0.718 0.72 0.728 0.738 0.738 0.754 0.754 0.754 0.752 0.778 0.778 0.778 0.792 0.792 0.792		<u>F과 2 월</u> 0,000563 0,000563 0,000566 0,000566 0,000566 0,000566 0,000562 0,00056 0,00058 0,00058 0,000592 0,000632 0,000634 0,000666
0 5 10 20 25 30 35 40 45 50 55 60 65 70	早止 3650 3540 3520 3620 3700 3600 3710 3580 3460 3200 3210 3210 3010 2660 2370 2020	부과호출 0.73 0.704 0.724 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.7		<u> 早辺 </u>	<u> 早</u>	투과호물 0,718 0,728 0,738 0,744 0,755 0,754 0,754 0,755 0,757 0,778 0,778 0,786 0,792 0,792 0,772 0,738	루과 2,84 2,84 2,78 2,77 2,88 2,8 2,8 2,8 2,93 2,93 2,96 3,06 3,06 3,17 3,33 3,35	早业主告 0,0006 0,000568 0,000566 0,000556 0,000554 0,000566 0,000566 0,000566 0,000566 0,000566 0,000562 0,000586 0,000586 0,000586 0,000586 0,000592 0,000612 0,000666 0,000666 0,00067
0 5 10 20 25 30 35 40 45 50 55 60 65	早止 3650 3540 3520 3600 3700 3600 3710 3580 3480 3200 3210 3210 3210 3210 2660 2370	부과효율 0.73 0.708 0.704 0.724 0.742 0.742 0.742 0.742 0.716 0.692 0.642 0.642 0.632 0.632 0.632	- - 3.03 3.31 3.31 3.34 3.34 3.32 3.46 3.49 3.49 3.49 3.49 3.55 3.58	早ご言書 0,000606 0,000662 0,000662 0,000664 0,000692 0,000692 0,000692 0,000698 0,000698 0,000694 0,000696 0,000696 0,000696 0,000696 0,000714 0,000726 0,000718	<u> 早</u>	투과효율 0.718 0.72 0.728 0.738 0.738 0.754 0.754 0.754 0.752 0.778 0.778 0.778 0.792 0.792 0.792		<u>F과 2 월</u> 0,000563 0,000563 0,000566 0,000566 0,000566 0,000566 0,000562 0,00056 0,00058 0,00058 0,000592 0,000632 0,000634 0,000666

Narrowing spectral width of green LED by GMR. structure to expand color mixing field

S. H. Tu¹, Y. C. Lee², C. L. Hsu¹, W. P. Lin¹, M. L. Wu¹, T. S. Yang¹, J. Y. Chang¹

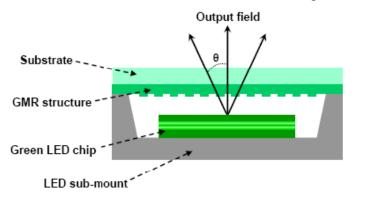
1. Department of Optical and Photonics, National Central University, Jhongli, Taiwan 32001, ROC 2. Optical Science Center, National Central University, Jhongli, Taiwan, ROC

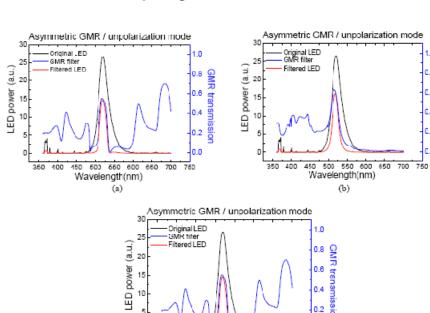
NTSIC

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x

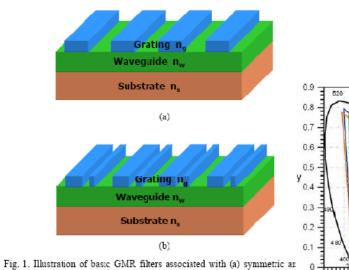
Original(122.05 %NTSC

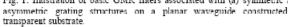

BA02(130.48 %NTSC)

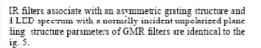

BA03(134.74 %NT3C) BA04(136.96 %NTSC)

530

0


540





350 400

Fig. 2. Illustration of the structural arrangement for reducing the output spectral width of a green LED chip.

450 500 550 000 050 700 750

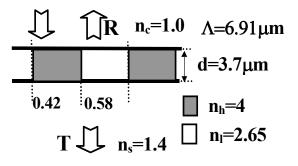
Wavelength(nm)

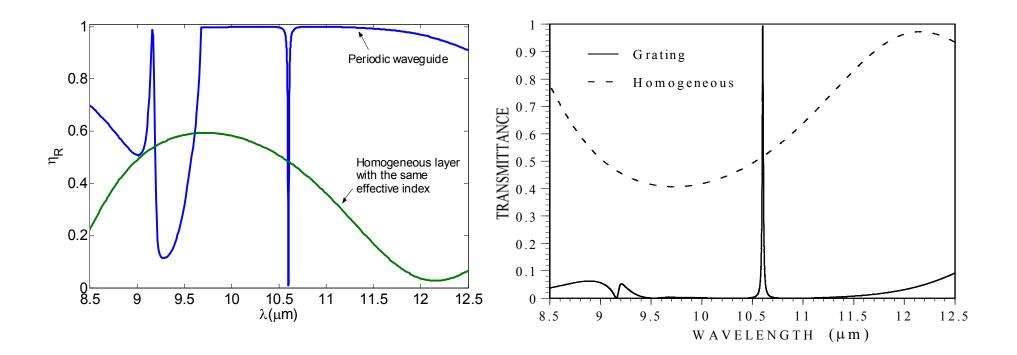
(c)

0.2

0.0

R

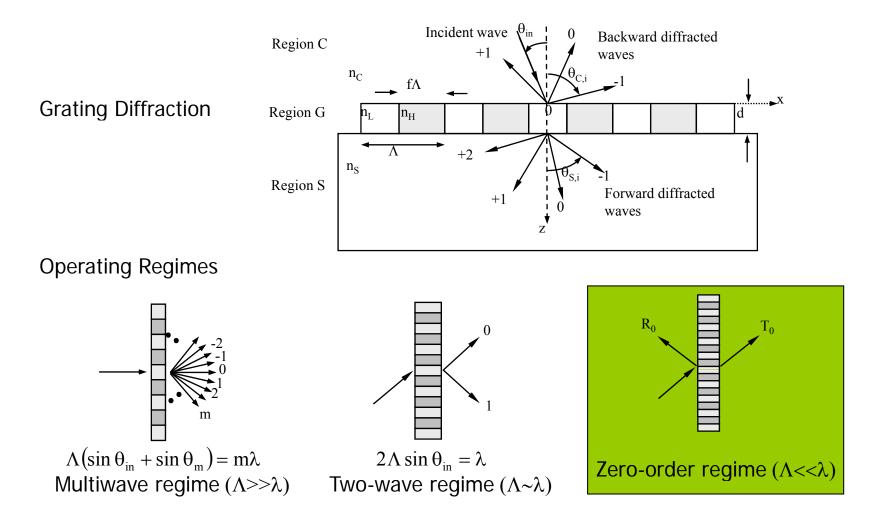

IL SI


0.2

Narrow-line bandpass filters

R. Magnusson and S. S. Wang, Appl. Optics 34, 8106-8109 (1995).

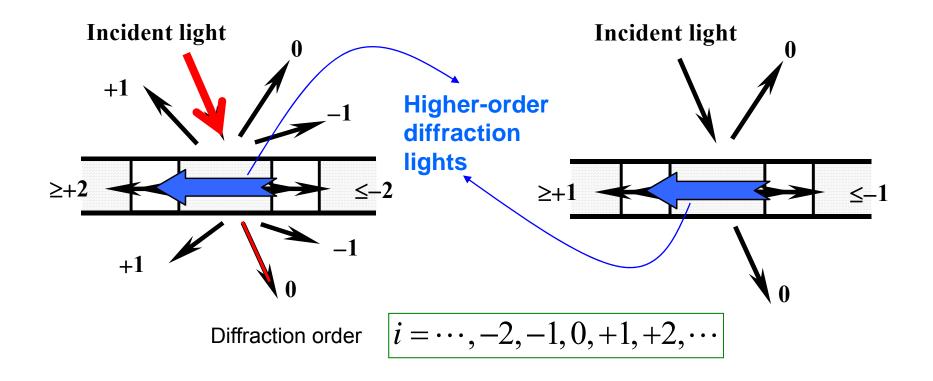
S. Tibuleac and R. Magnusson, Opt. Lett. 26, 584-586 (2001).



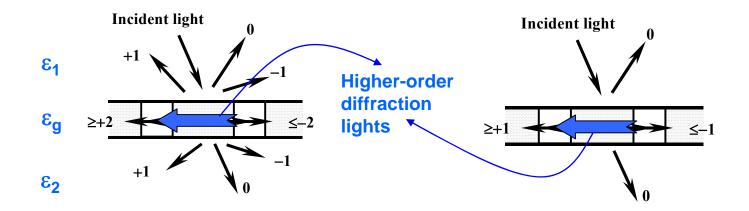
DIFFRACTIVE OPTICAL ELEMENTS (DOEs) ?

Transmission type

DOE/PhC : Fine spatial patterns arranged to control propagation of light


Basic resonance interactions

Excitation of a leaky guided mode


Consider simplest 1D WGG case for clarity

Higher-order diffraction regime

Zero-order diffraction regime

Guided mode resonance (GMR)

If ε_g (average dielectric constant) > ε_1 , ε_2 the higher-order diffraction lights can be guided on a thin layer of grating.

→ "Guided mode resonance (GMR)" of waveguide gratings

GMR effect

Basic Concepts of GMR

Theory and applications of guided-mode resonance filters

S. S. Wang and R. Magnusson APPLIED OPTICS / Vol. 32, No. 14 / 10 May 1993, 2606

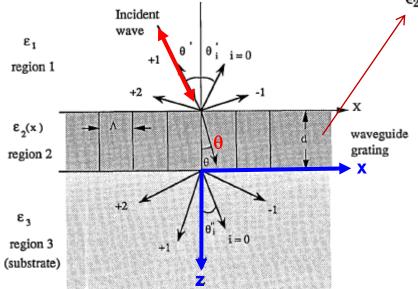


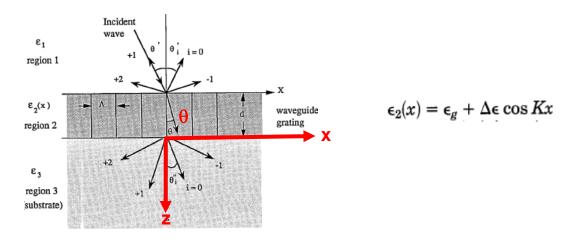
Fig. 1. Basic planar waveguide-grating model used. The angles θ_i' represent the angles of the wave vector of the *i*th backward-diffracted wave with respect to the *z* axis; θ_i'' are the corresponding angles for the forward-diffracted waves. The angle of incidence (θ') is arbitrary.

 $\epsilon_2(x) = \epsilon_g + \Delta \epsilon \cos K x$

 $ε_g$ is the average relative permittivity, Δε is the modulation amplitude, $K = 2\pi/\Lambda$, where Λ is the grating period.

A guided wave can be excited if the effective waveguide index of refraction, N, *is in the range*

$$\max\{\sqrt{\epsilon_1}, \sqrt{\epsilon_3}\} \le |N| < \sqrt{\epsilon_g}$$


$$N = \frac{\beta}{k} \quad k = \frac{2\pi}{\lambda_0}$$

$$k_x \equiv \beta$$

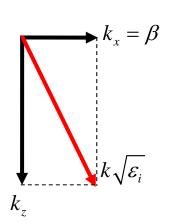
$$k_z = \sqrt{k^2 \varepsilon_g - k_x^2}$$

$$k_z$$

Propagation constant of waveguide grating

Coupled-wave equations governing wave propagation in the waveguide grating can be expressed as

$$\frac{\mathrm{d}^2 \hat{S}_i(z)}{\mathrm{d}z^2} + \left[k^2 \epsilon_g - k_2 (\sqrt{\epsilon_g} \sin \theta - i\lambda/\Lambda)^2 \hat{S}_i(z) + \frac{1}{2} k^2 \Delta \epsilon [\hat{S}_{i+1}(z) + \hat{S}_{i-1}(z)] = 0, \quad (1)$$


where \hat{S}_i is the amplitude of the inhomogeneous plane wave of the *i*th space harmonic

As $\Delta \epsilon \rightarrow 0$, the wave equation associated with an unmodulated dielectric waveguide is given by

$$\frac{\mathrm{d}^2 E(z)}{\mathrm{d}z^2} + (k^2 \epsilon_g - \beta^2) E(z) = 0, \qquad (2) \qquad k_z = \sqrt{k^2 \varepsilon_g - k_x^2} \quad \left(k_x = \beta\right)$$

Letting $\Delta \epsilon \rightarrow 0$ in Eq. (1) and by direct comparison with Eq. (2), we obtain the effective propagation constant of the waveguide grating:

 $\beta \rightarrow \beta_i = k(\sqrt{\epsilon_g} \sin \theta - i\lambda/\Lambda)$ **Propagation constant**

Diffraction equation of waveguide grating

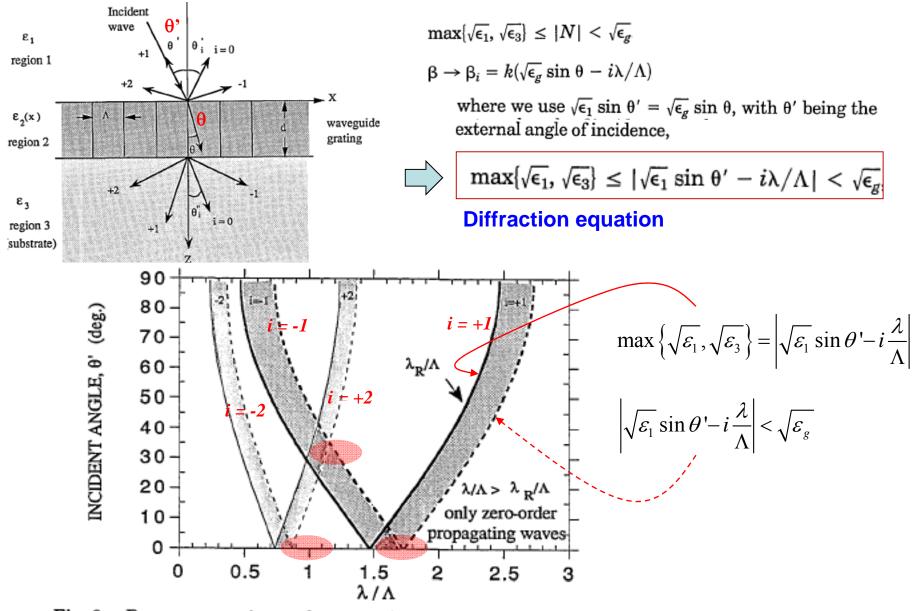
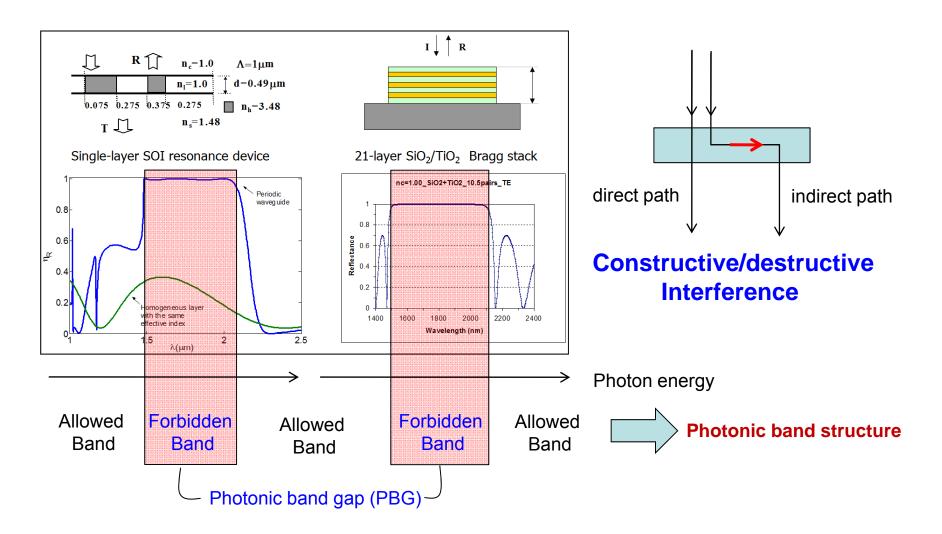



Fig. 3. Resonance regimes of waveguide gratings. The parameters are $\epsilon_1 = 1$, $\epsilon_g = 3$, and $\epsilon_3 = 2.161$.

How to intuitively understand the GMR effect, for example, in mirrors?

No transmission of light within the bandgap due to destructive interference in transmitted light.

Photonic band structure is analogous to energy-band structure of electrons

Photons and Electrons

Nanophotonics, Paras N. Prasad, 2004, John Wiley & Sons, Inc., Hoboken, New Jersey., ISBN 0-471-64988-0

Both photons and electrons are elementary particles that simultaneously exhibit particle and wave-type behavior.

Photons and electrons may appear to be quite different as described by classical physics, which defines photons as electromagnetic waves transporting energy and electrons as the fundamental charged particle (lowest mass) of matter.

A quantum description, on the other hand, reveals that photons and electrons can be treated analogously and exhibit many similar characteristics.

Photons	Electrons		
Waveler	ngth		
$\lambda = \frac{h}{P} = \frac{c}{\nu}$	$\lambda = \frac{h}{p} = \frac{h}{mv}$		
Eigenvalue (Way	ve) Equation		
$\left\{ \nabla \times \frac{1}{\varepsilon(r)} \nabla \times \right\} \mathbf{B}(r) = \left(\frac{\omega}{c}\right)^2 \mathbf{B}(r)$	$\hat{H}\psi(r) = -\frac{\hbar^2}{2m} (\nabla \cdot \nabla + V(r))\psi(r) = E\psi$		
Free-Space Pr	opagation		
Plane wave	Plane wave:		
$\mathbf{E} = (\frac{1}{2}) \mathbf{E}^{\circ} (e^{i\mathbf{k}\cdot\mathbf{r}-\boldsymbol{\omega}t} + e^{-i\mathbf{k}\cdot\mathbf{r}+\boldsymbol{\omega}t})$	$\Psi = c(e^{i\mathbf{k}\cdot\mathbf{r}-\boldsymbol{\omega}t} + e^{-i\mathbf{k}\cdot\mathbf{r}+\boldsymbol{\omega}t})$		
\mathbf{k} = wavevector, a real quantity	\mathbf{k} = wavevector, a real quantity		
Interaction Potenti	al in a Medium		
Dielectric constant (refractive index)	Coulomb interactions		
Propagation Through a Cla	ssically Forbidden Zone		
Photon tunneling (evanescent wave) with wavevector, \mathbf{k} , imaginary and hence amplitude decaying exponentially in the forbidden zone	Electron-tunneling with the amplitude (probability) decaying exponentially in the forbidden zone		
Localiza	tion		
Strong scattering derived from large variations in dielectric constant (e.g., in photonic crystals)	Strong scattering derived from a large variation in Coulomb interactions (e.g., in electronic semiconductor crystals)		
Cooperative	e Effects		
Nonlinear optical interactions	Many-body correlation		
	Superconducting Cooper pairs Biexciton formation		

Table 2.1.	Similarities in	Characteristics o	f Photons and	Electrons
------------	-----------------	-------------------	---------------	-----------

PBG

Consider free-space propagation of photons and electrons.

In a "free-space" propagation, there is no interaction potential or it is constant in space. For photons, it simply implies that no spatial variation of refractive index *n* occurs.

The wavevector dependence of energy is different for photons (linear dependence) and electrons (quadratic dependence).

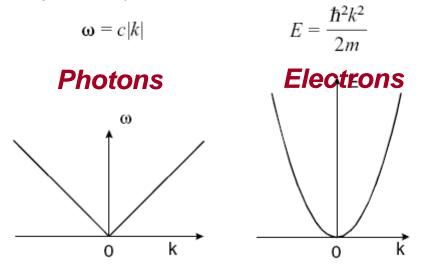
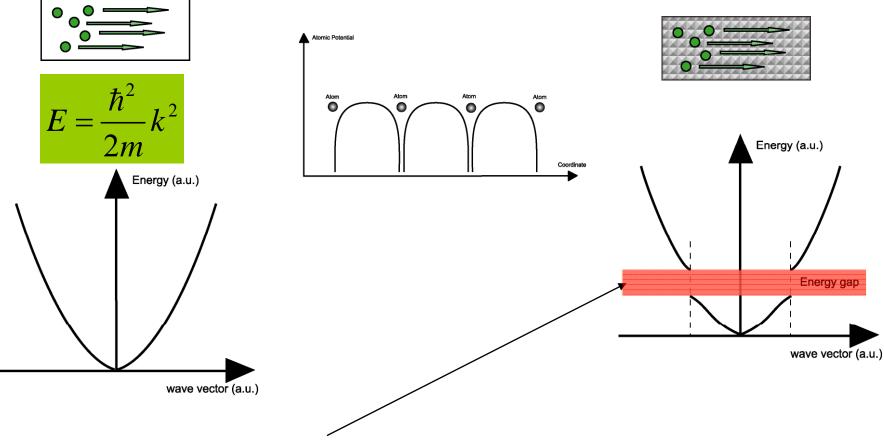



Figure 2.1. Dispersion relation showing the dependence of energy on the wavevector for a free-space propagation. (a) Dispersion for photons. (b) Dispersion for electrons.

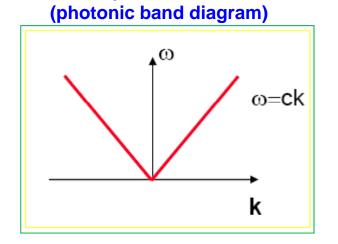
For free-space propagation, all values of frequency for photons and energy for electrons are permitted. This set of allowed continuous values of frequency (or energy) form together a band. The band structure refers to the characteristics of dependence of frequency ω (or energy) on wavevector k, called dispersion relation.

Energy band structure = Dispersion relation (ω -k relation)

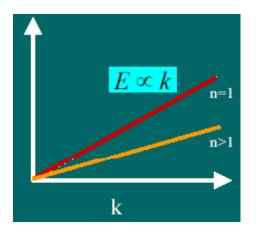
Photonic bandgap (PBG) is analogous to electron energy bandgap

Gap in energy spectra of electrons arises in periodic structure

A simple example of the band-structure: vacuum (1d)

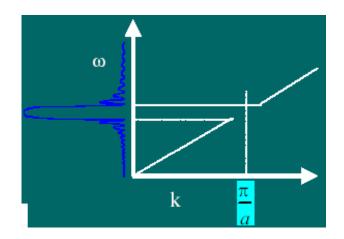

Vacuum: ε =1, μ =1, plane-wave solution to the Maxwell's equation:

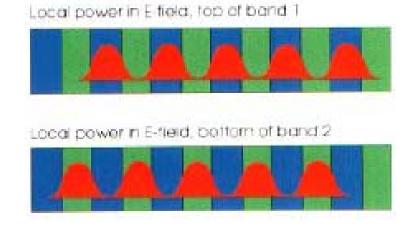
A band structure, or dispersion relation defines the relation between the frequency ω, and the wavevector k.


$$\omega = c |\mathbf{k}|$$

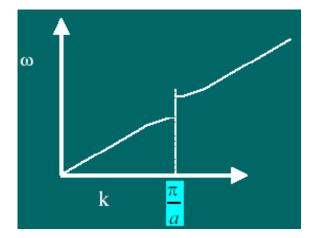
For a one-dimensional system, the band structure can be simply depicted as:

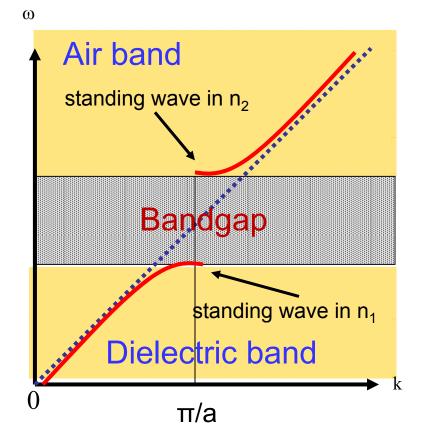
PBG formation by periodic structures

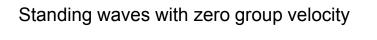

1. Dispersion curve for free space

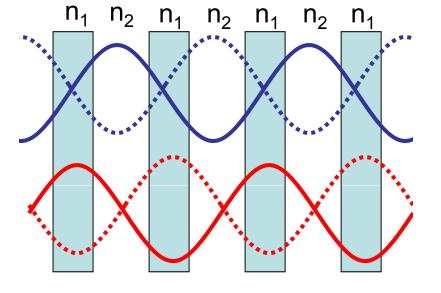

2. In a periodic system, when half the wavelength corresponds to the periodicity

$$\lambda/2 = a \quad k = \pi/a$$

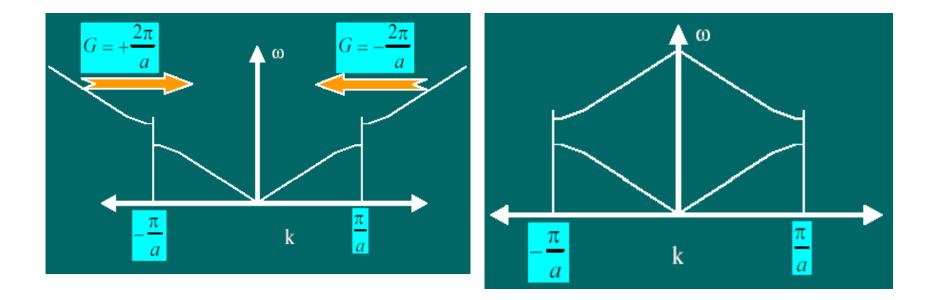

the Bragg effect prohibits photon propagation.


3. At the band edges, standing waves form, with the energy being either in the high or the low index regions

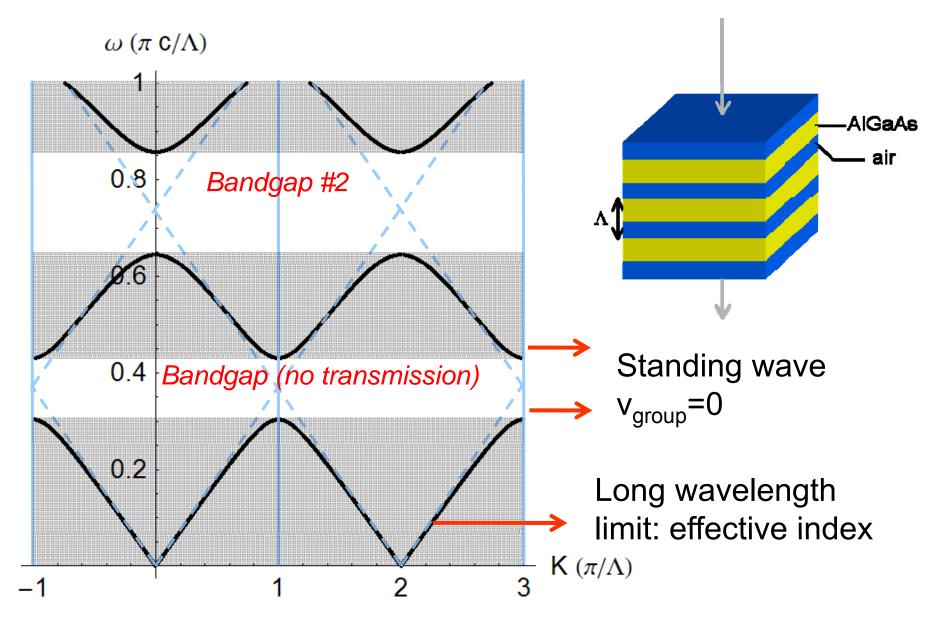



4. Standing waves transport no energy with zero group velocity

Standing waves at band edges



 n_1 : high index material n_2 : low index material


Reduced Brillouin zone

Plot the dispersion curves for both the positive and the negative sides, and then shift the curve segments with $|k| > \pi/a$ upward or downward one reciprocal lattice vectors.

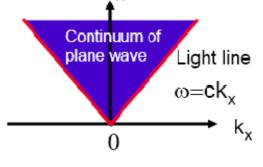
This reduced range of wave vectors is called the "Brillouin zone"

Photonic Band Gaps (PBG)

Visualization of the vacuum band structure (2d)

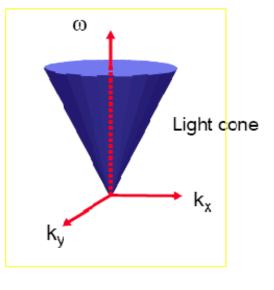
For a two-dimensional system:

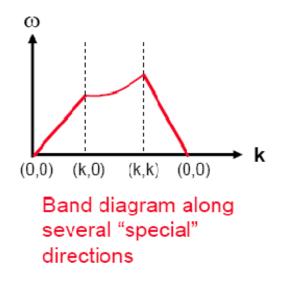
$$\omega = c\sqrt{k_x^2 + k_y^2}$$


This function depicts a cone: light cone.

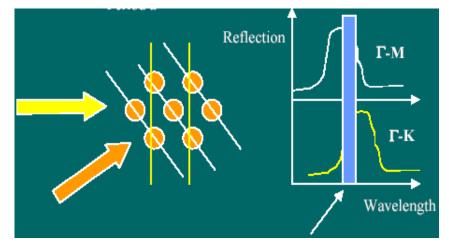
k_x

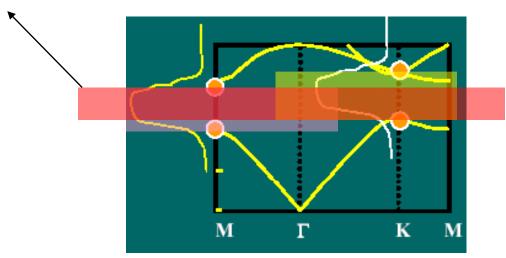
A few ways to visualize this band structure :


Constant frequency contour

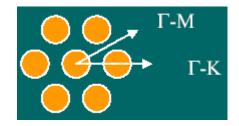

k,

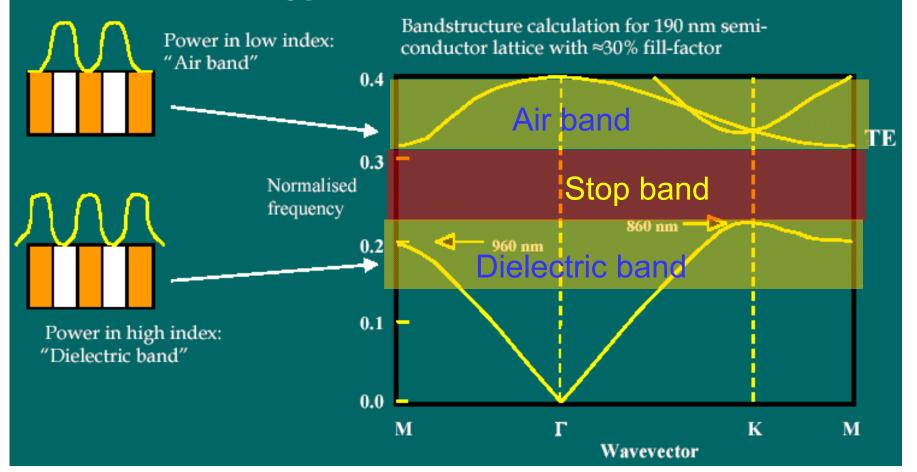
Ο

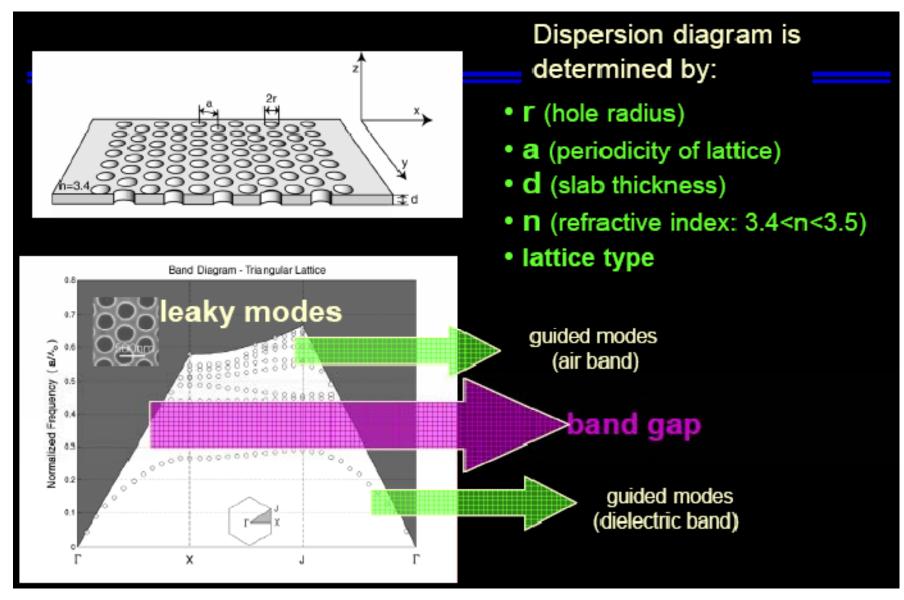

Projected band diagram



2-D Photonic Crystals

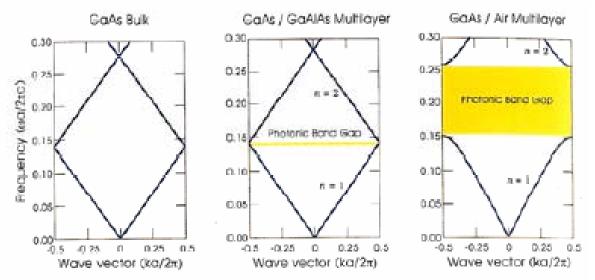

1. In 2-D PBG, different layer spacing, *a*, can be met along different direction. Strong interaction occurs when $\lambda/2 = a$.


2. PBG (Photonic band gap) = stop bands overlap in all directions


Band Diagram

Field redistribution causes bandgap

Band structure of a two-dimensional crystal



Contrast dependent band gap

Magnitude of the bandgap depends on index contrast

No contrast, no reflections, no gap

Weak contrast, reflected beam only enhanced if many interfaces contribute with exactly the correct phase: highly frequency selective: small gap

Figure 2 The photonic band structures for on-axis propagation, shown for three different multilayer films, all of which have layers of width 0.5*a*. *Left:* each layer has the same dielectric constant $\varepsilon = 13$. *Center:* layers alternate between $\varepsilon = 13$ and $\varepsilon = 12$. *Right:* layers alternate between $\varepsilon = 13$ and $\varepsilon = 1$.

From: Photonic Crystals – Molding the flow of light, Joannopoulos, Meade, and Winn

Angular dependence vs. photonic crystal lattice

2D structures: dispersion relation angle dependent Similar to phonons in atomic lattices or electrons in periodic potentials (but without exclusion principle!) Joannopoulos, JD, Villeneuve, PR & Fan, S. Photonic crystals: putting a new twist

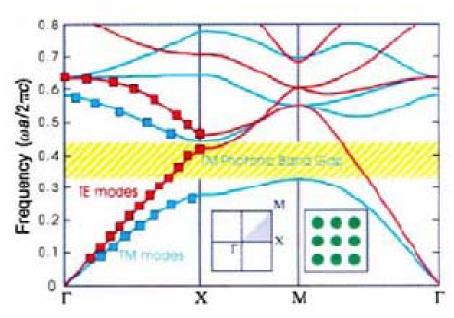
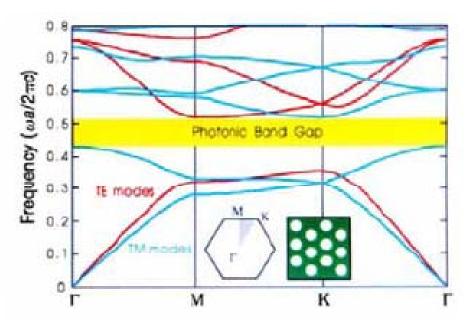
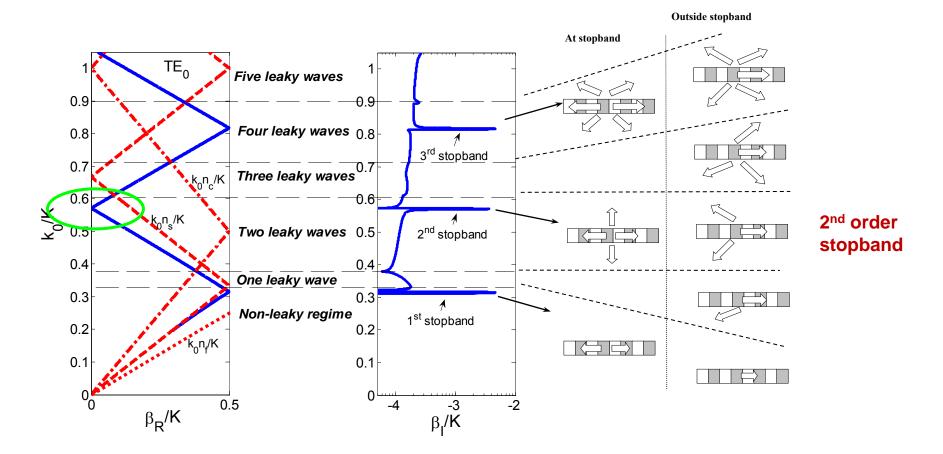
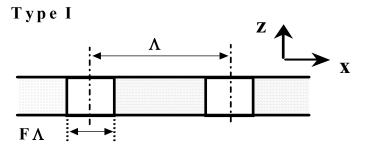
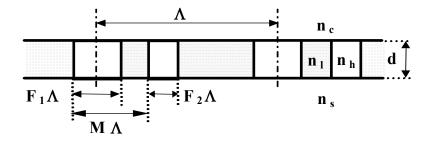




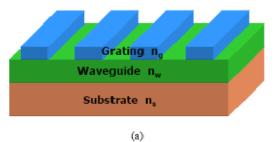
Figure 1 Top, photonic band structure for a squarelattice of dielectric/ ϵ = 8.9) rods in air with radius r = 0.2a, where a is the lattice constant. TM modes are shown in blue and TE modes in red. The solid lines are from theory and the squares represent experimental measurements along Γ to X from Robetson *et al.*⁹ Bottom, photonic band structure for a triangular lattice of air cylinders (r = 0.48a) in dielectric ($\epsilon = 13$). Note the presence of a complete photonic bandgap for both TE and TM polarizations in this case as shown by a solid yellow bar. In both panels high-dielectric material is indicated in green in the insets.

on light. Nature 386, 143-149 (1997)


Photonic bandgaps (stop bands) in GMR gratings

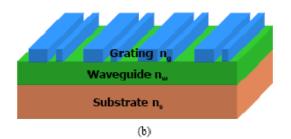
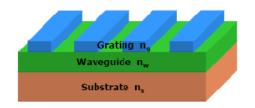
Complex propagation constant of leaky mode $\beta = \beta_R + j \beta_I$

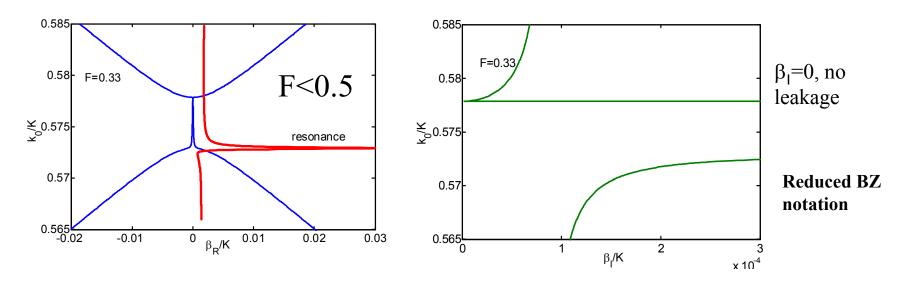

Symmetry in grating profile of GMR elements


(a) Grating with symmetric profile

(b) Grating with asymmetric profile

Type II


Fig. 1. Illustration of basic GMR filters associated with (a) symmetric and (b) asymmetric grating structures on a planar waveguide constructed on a transparent substrate.

Details: Y. Ding and R. Magnusson, "Use of nondegenerate resonant leaky modes to fashion diverse optical spectra," Optics Express, May 3, 2004

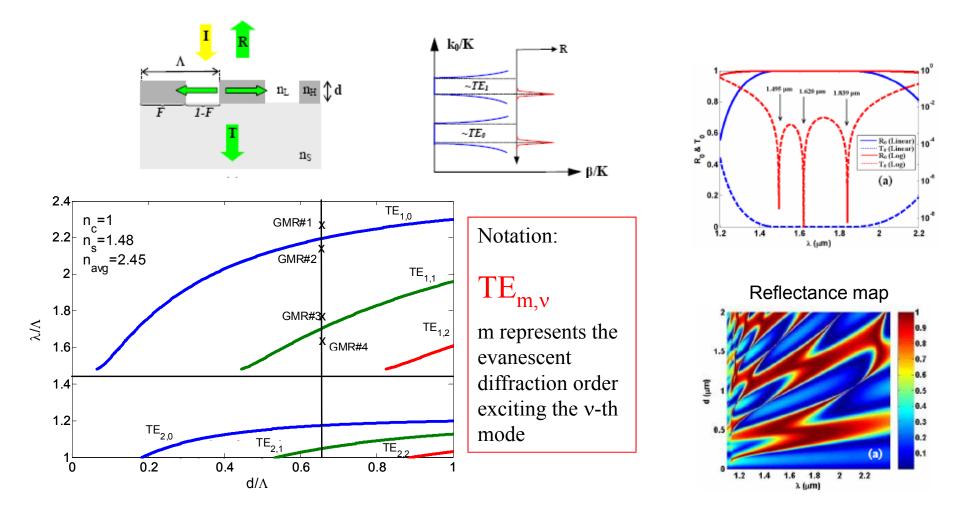
Symmetric profile band diagram

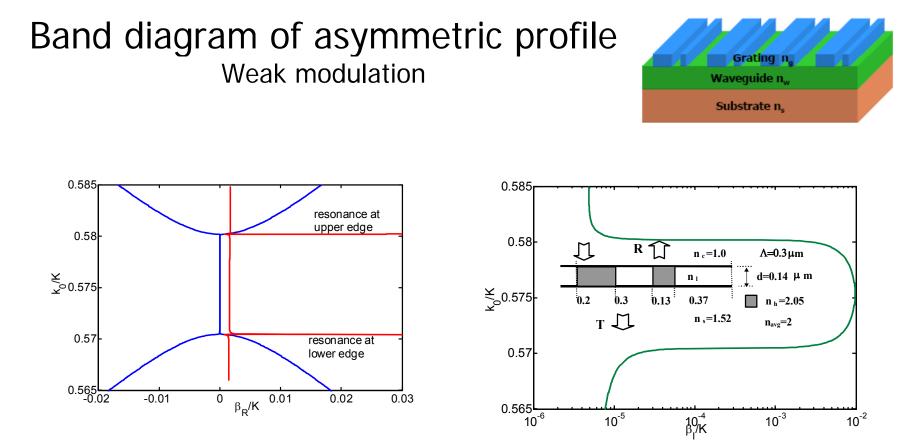
Complex propagation constant of leaky mode $\beta = \beta_R + j \beta_I$

Vincent/Neviere 1979: Asymmetry "defeats selection rule"

P. Vincent and M. Neviere, "Corrugated dielectric waveguides: A numerical study of the second-order stop bands," Appl. Phys. **20**, 345-351 (1979).

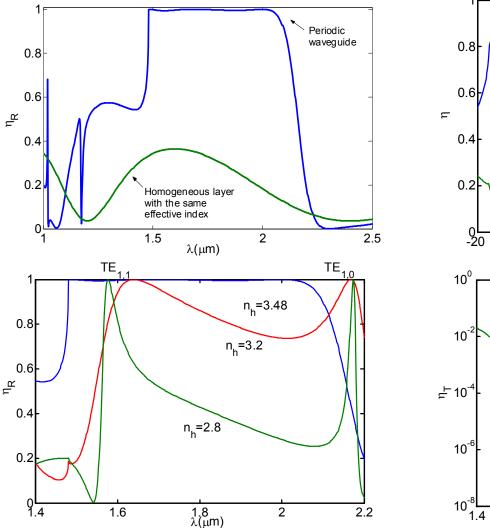
Perturbation model: $0,\pi$ phase differences of radiated fields (symmetric profile)

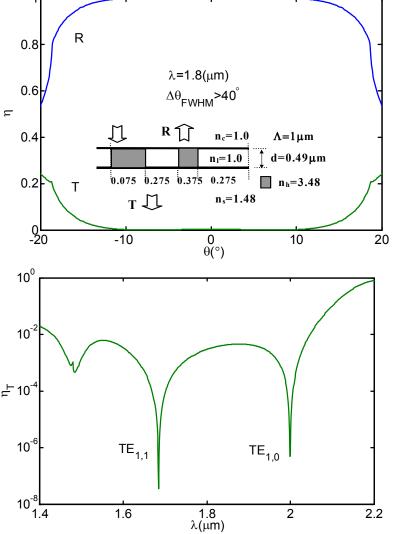

R. F. Kazarinov and C. H. Henry, "Second-order distributed feedback lasers with mode selection provided by first-order radiation loss," IEEE J. Quant. Elect. **QE-21**, 144-150 (1985).

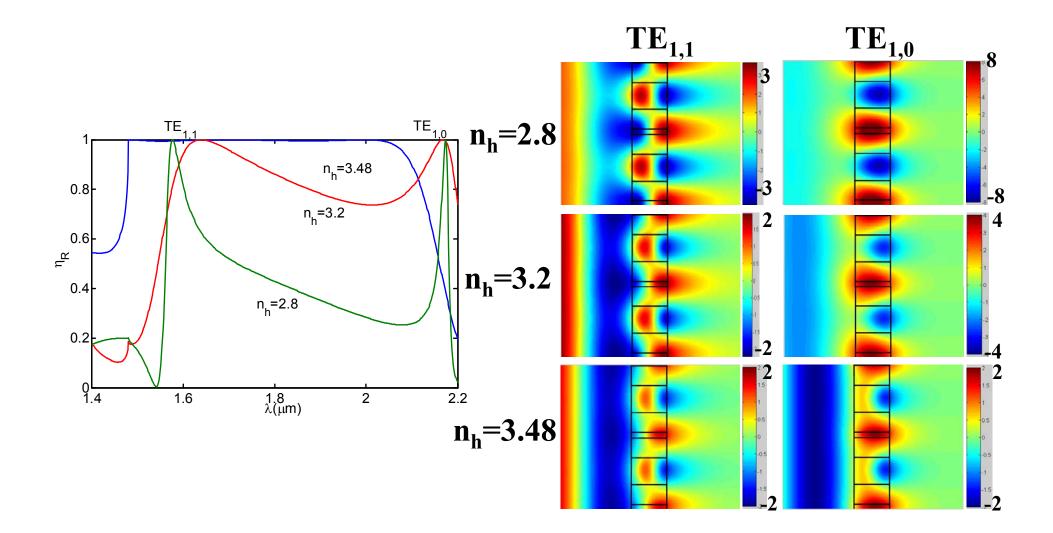

Numerical calculations of resonance at edges (symmetric profile)

D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, and J. M. Bendickson, "Effects of modulation strength in guided-mode resonant subwavelength gratings at normal incidence," J. Opt. Soc. Am. A. **17**, 1221-1230 (2000).

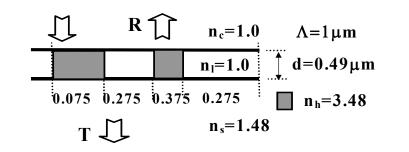
Design of multi-resonance elements

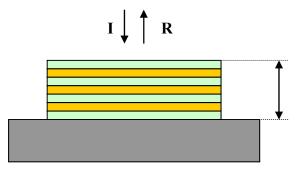

- Resonance locations are estimated with the eigenfunction of homogeneous waveguide (modulation~0)
- Numerical RCWA computations

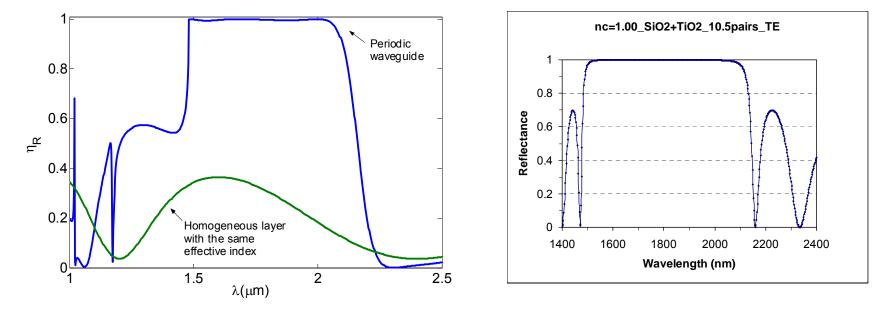



- Both edges are lossy
- GMRs appear at both edges
- Resonance separation depends on size of bandgap
- Resonance degeneracy of symmetric case removed

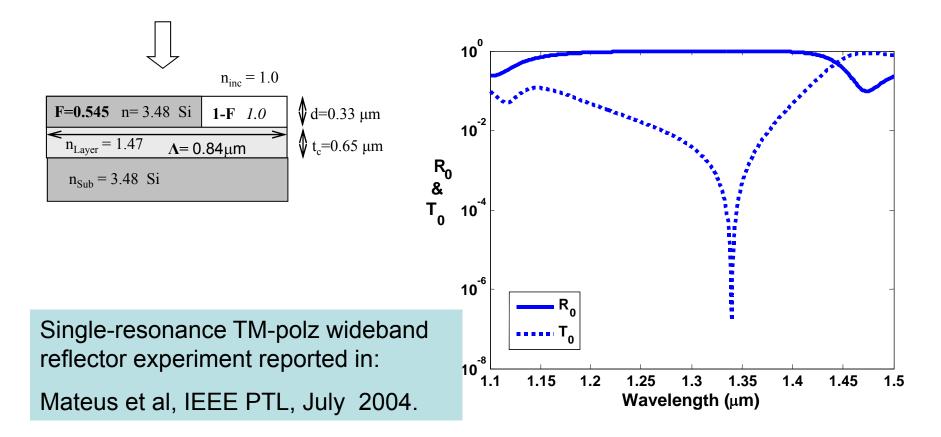
Resonant SOI leaky-mode reflector Single layer, TE polarization, 2 resonance peaks



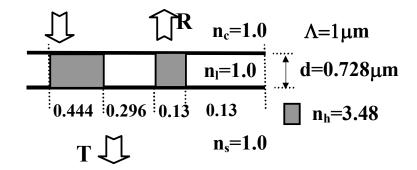

Resonant leaky-mode reflector: E-fields Single layer, TE polarization, 2 resonance peaks

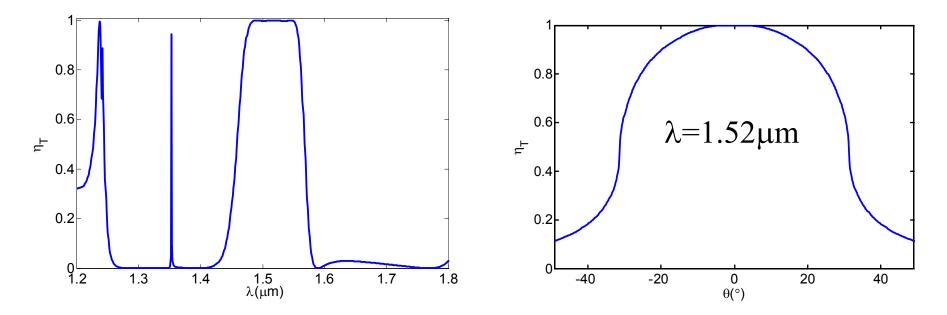

GMR reflectors vs Bragg stacks

Single-layer SOI resonance device

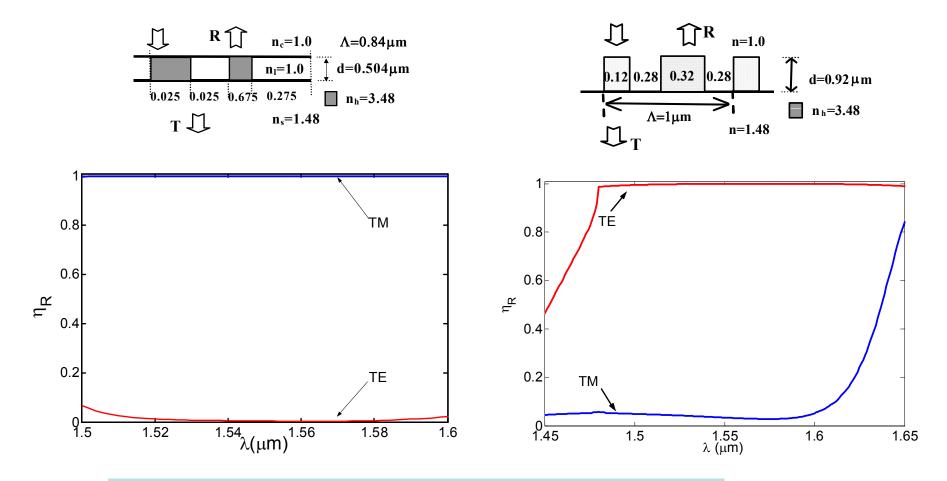


21-layer SiO₂/TiO₂ Bragg stack

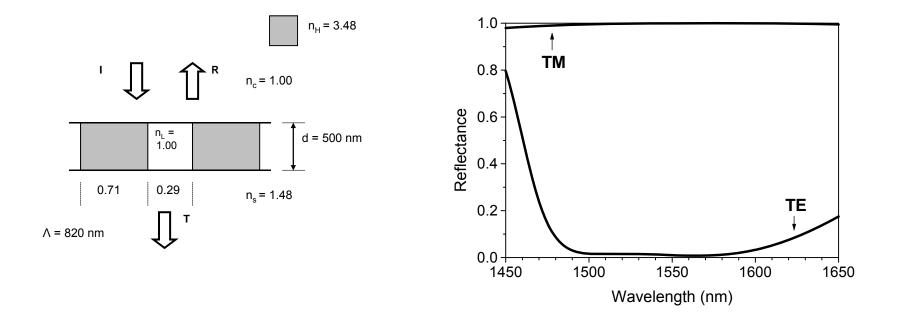



~600 nm wide reflection band in each case

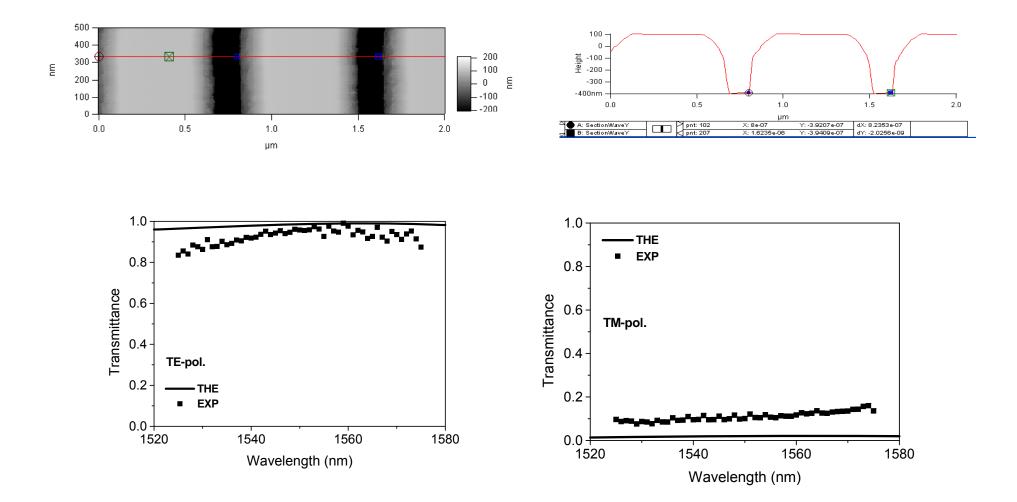
Wideband SOI reflector Single resonance, TE polz



Resonant SOI leaky-mode transmission element Single layer, TE polarization, ~100 nm flattop



Resonant SOI leaky mode polarizers

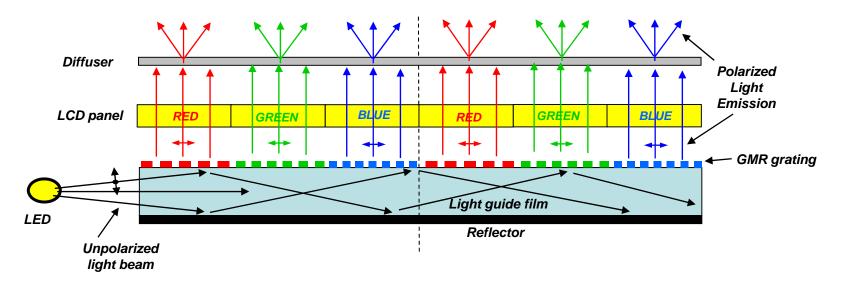

Y. Ding and R. Magnusson, "Resonant leaky-mode spectral-band engineering and device applications," *Optics Express,* vol. 12, 5661-5674 (2004).

Fabricated SOI single-layer ~100 nm polarizer

Goal: Simple fab; higher quality via more complex distribution within period

AFM image and preliminary polarizer data Electron-beam writing with reactive ion etching

Leaky-mode resonance technology: Application summary


- Narrow-band reflection (bandstop)/transmission (bandpass) filters ($\Delta\lambda$ ~sub nm)
- Wide-band reflection (bandstop)/transmission (bandpass) filters ($\Delta\lambda \sim 100$'s nm)
- Tunable filters, EO modulators, and switches
- Mirrors for vertical cavity lasers
- Wavelength division multiplexing (WDM)
- Polzarization independent elements
- Reflectors
- Polarizers
- Security devices
- Laser resonator frequency selective mirrors
- Non-Brewster polarizing mirrors
- Laser cavity tuning elements
- Spectroscopic biosensors
- Tunable display pixels

Leaky-mode resonance photonics: An enabling technology platform

- Interesting physics
- Complex, interacting resonant leaky modes
- Remaining challenges in analysis
- Remaining challenges in fabrication
- Many potential application fields
- Applications emerging
- Favorable area for R&D&A

In summary

- 1. What is the GMR effect of waveguide gratings?
 - 2. What is the photonic band structure (or, dispersion relation)?
- 3. What can we play with GMR filters for display?
- 4. What is the practical difficulties to be solved in GMR applications?

Next lecture at 07/07

- (06/23) Introduction: Micro- and nano-optics based on diffraction effect for next generation technologies
- (06/30) Guided-mode resonance (GMR) effect for filtering devices in LCD display panels

(07/07) Surface-plasmons: A basic

Key

notes

- (07/14) Surface-plasmon waveguides for biosensor applications
- (07/21) Efficient light emission from LED, OLED, and nanolasers by surface-plasmon resonance