Chapter 2.
Geometrical Optics

Light Ray: the path along which light energy is transmitted from one point to another in an optical system.

Speed of Light: Speed of light (in vacuum): a fundamental (or a “defined”) constant of nature given by
\[c = 299,792,458 \text{ meters / second} = 186,300 \text{ miles / second}. \]

Index of Refraction

\[n = \frac{c}{v}, \]
where \(c \) = speed of light in vacuum and \(v \) = speed of light in the material.

Some examples of various types of matter and the associated index of refraction include:

<table>
<thead>
<tr>
<th>matter</th>
<th>index of refraction (n)</th>
<th>velocity of light (v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolute vacuum</td>
<td>(n = 1)</td>
<td>(v = c)</td>
</tr>
<tr>
<td>air</td>
<td>(n = 1.0003)</td>
<td>(v = 0.9997 c)</td>
</tr>
<tr>
<td>water</td>
<td>(n = 1.33)</td>
<td>(v = 0.75 c)</td>
</tr>
<tr>
<td>glass</td>
<td>(1.4 < n < 1.8)</td>
<td>(0.56 c \leq v \leq 0.71 c)</td>
</tr>
<tr>
<td>diamond</td>
<td>(n = 2.4)</td>
<td>(v = 0.42 c)</td>
</tr>
<tr>
<td>silicon</td>
<td>(n = 3.5)</td>
<td>(v = 0.29 c)</td>
</tr>
</tbody>
</table>
The optical path length in a medium is the integral of the refractive index and a differential geometric length:

\[
OPL = \int_a^b n \, ds
\]
Reflection and Refraction

Plane contains surface normal, incident, reflected, and refracted rays.

Reflection: $\theta_r = \theta_i$

Refraction: $\frac{\sin \theta_i}{\sin \theta_r} = \frac{n_t}{n_i} = \text{constant}$
Plane of incidence
Fermat’s Principle: Law of Reflection

Fermat’s principle:
Light rays will travel from point A to point B in a medium along a path that minimizes the time of propagation.

\[OPL_{AB} = n \sqrt{(-x_1)^2 + (y_2 - y_1)^2} + n \sqrt{(-x_2)^2 + (y_3 - y_2)^2} \]

Fix \(x_1, y_1, x_3, y_3 \)

\[\frac{dOPL_{AB}}{dy_2} = 0 = \frac{n \frac{1}{2} 2(y_2 - y_1)}{\sqrt{(x_1)^2 + (y_2 - y_1)^2}} + \frac{n \frac{1}{2} 2(y_3 - y_2)}{\sqrt{(x_3)^2 + (y_3 - y_2)^2}} \]

0 = \frac{n(y_2 - y_1)}{\sqrt{(x_1)^2 + (y_2 - y_1)^2}} - \frac{n(y_3 - y_2)}{\sqrt{(x_3)^2 + (y_3 - y_2)^2}}

0 = n \sin \theta_i - n \sin \theta_r

\[\sin \theta_i = \sin \theta_r \]

\[\theta_i = \theta_r \quad \text{: Law of reflection} \]
Fermat’s Principle: Law of Refraction

Law of refraction:

\[OPL_{AB} = n_i \sqrt{(x_2-x_1)^2 + (y_1)^2} + n_t \sqrt{(x_3-x_2)^2 + (-y_3)^2} \]

Fix \(x_1, y_1, x_3, y_3 \)

\[
\frac{d(OPL_{AB})}{dy_2} = 0 = \frac{n_i \frac{1}{2} 2(x_2-x_1)}{\sqrt{(x_2-x_1)^2 + (y_1)^2}} + \frac{n_t \frac{1}{2} 2(x_3-x_2)(-1)}{\sqrt{(x_3-x_2)^2 + (y_3)^2}}
\]

\[
0 = \frac{n_i (x_2-x_1)}{\sqrt{(x_2-x_1)^2 + (y_1)^2}} - \frac{n_t (x_3-x_2)}{\sqrt{(x_3-x_2)^2 + (y_3)^2}}
\]

\[0 = n_i \sin \theta_i - n_t \sin \theta_t \]

\[\Rightarrow n_i \sin \theta_i = n_t \sin \theta_t \]

\[n_i \theta_i = n_t \theta_t \]: Law of refraction in paraxial approx.
Refraction – Snell’s Law: \(n_i \sin \theta_i = n_t \sin \theta_t \)

\[n_i < n_t \Rightarrow \theta_i > \theta_t \]

\[n_i > n_t \Rightarrow \theta_i < \theta_t \]

\[n_i \times n_t < 0 \]
Negative index of refraction: $n < 0$

$$k = \omega \sqrt{\varepsilon \mu} = k_0 n, \quad n = \sqrt{\varepsilon \mu},$$

$$v = \frac{c}{\sqrt{\varepsilon \mu} n} = \frac{c}{\sqrt{\varepsilon \mu} n},$$
If Point B is the source of light rays, Fermat’s principle must predict the same path as determined for the original direction of light propagation.

Principle of Reversibility

Any actual ray of light in an optical system, if reversed in direction, will retrace the same path backward.

(A simple but useful principle.)
2-4. Reflection in plane mirrors

Describe the direction of the light ray by its unit vector.

Consider reflection from one surface:
\[\hat{\mathbf{r}}_{AB} = (x, y, z) \rightarrow \hat{\mathbf{r}}_{BC} = (x, y, -z) \]

Now consider reflection sequentially from all three rectangular coordinate planes ("Corner reflector"):
\[\hat{\mathbf{r}}_{AB} = (x, y, z) \rightarrow \hat{\mathbf{r}}_{DE} = (-x, -y, -z) \]

→ The ray returns precisely parallel to the line of its original approach.

Example in our life:
Plane surface – Image formation

A point

\[\overrightarrow{SS'} \perp \overrightarrow{NP} \]
\[\overrightarrow{SN} = \overrightarrow{S'N} \]

A line

- Upside down
- Transverse orientation of object and image are the same
- Unity magnification

A 3-D object

Two reflecting surfaces

These are all virtual image (the image cannot be projected on a screen as in the case of a real image).
Total internal Reflection (TIR)

\[\theta_c = \sin^{-1}\left(\frac{n_2}{n_1}\right) \]

Example 1: Diamond

Most of the rays entering the top of the diamond will exit from the top due to total internal reflection.

Example 2: Optical Fiber

\[n_{\text{core}} > n_{\text{cladding}} \]
2-6. Imaging by an Optical System

Wavefront: Spherical surfaces normal to the light rays

- **Fermat’s principle** → All optical paths result in the same travel time.

- **Principle of reversibility** applies.

Points O and I are called *conjugate points*.
Cartesian Surfaces

• A Cartesian surface – those which form perfect images of a point object
• E.g. ellipsoid and hyperboloid
Imaging by Cartesian reflecting surfaces

- **Plane mirror**
- **Elliptical mirror**
 - The optical paths obey Hero’s principle.
 - → P_1 and P_2 are the two foci.
- **Hyperbolic mirror**
- **Parabolic mirror**

Quiz: Which ones are real images? Which ones are virtual images?

Example in real life:
Imaging by Cartesian refracting Surfaces

Ellipsoid surface

$n_o > n_i$

Focus

Hyperbolic surface

$n_o < n_i$

Focus

Double-hyperbolic lens

Aberration-free imaging
The optical path length for any path from Point O to the image Point I must be the same by Fermat’s principle.

\[n_o d_o + n_i d_i = n_o s_o + n_i s_i = \text{constant} \]

\[n_o \sqrt{x^2 + y^2 + z^2} + n_i \sqrt{(s_o + s_i - x)^2 + y^2 + z^2} = n_o s_o + n_i s_i = \text{constant} \]

The Cartesian or perfect imaging surface is a paraboloid in three dimensions. Usually, though, lenses have spherical surfaces because they are much easier to manufacture.

→ Spherical approximation or, paraxial approx.
Approximation by Spherical Surfaces

Hyperbolic surface

Parabolic mirror

Spherical aberration

Paraxial approximation

But spherical surface is easier to make!
(We cannot have everything.)
2-7. Reflection at a Spherical Surface

Paraxial approximation: \(\theta \) is small, \(\sin \theta \approx \tan \theta \approx \theta \)

\[
\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}
\]

\[
f = \begin{cases}
R & > 0 \quad \text{(Concave mirror, } R < 0) \\
\frac{R}{2} & < 0 \quad \text{(Convex mirror, } R > 0)
\end{cases}
\]

\(s' \) is positive for real image, negative for virtual image
Reflection from a spherical convex surface gives rise to a virtual image. Rays appear to emanate from point I behind the spherical reflector.

Use paraxial or small-angle approximation for analysis of optical systems:

\[
\sin \varphi = \varphi - \frac{\varphi^3}{3!} + \frac{\varphi^5}{5!} - \cdots \approx \varphi
\]

\[
\cos \varphi = 1 - \frac{\varphi^2}{2!} + \frac{\varphi^4}{4!} - \cdots \approx 1
\]
Considering Triangle OPC and then Triangle OPI we obtain:

\[\theta = \alpha + \varphi \quad 2\theta = \alpha + \alpha' \]

Combining these relations we obtain:

\[\alpha - \alpha' = -2\varphi \]

Again using the small angle approximation:

\[\alpha \approx \tan \alpha \approx \frac{h}{s} \quad \alpha' \approx \tan \alpha' \approx \frac{h}{s'} \quad \varphi \approx \tan \varphi \approx \frac{h}{R} \]
Reflection at Spherical Surfaces III

Image distance s' in terms of the object distance s and mirror radius R:

$$\frac{h}{s} - \frac{h}{s'} = -2\frac{h}{R} \quad \Rightarrow \quad \frac{1}{s} - \frac{1}{s'} = -\frac{2}{R}$$

At this point the sign convention in the book is changed!

$$\frac{1}{s} + \frac{1}{s'} = -\frac{2}{R}$$

The following sign convention must be followed in using this equation:

1. Assume that light propagates from left to right. Object distance s is positive when point O is to the left of point V.

2. Image distance s' is positive when I is to the left of V (real image) and negative when to the right of V (virtual image).

3. Mirror radius of curvature R is positive for C to the right of V (convex), negative for C to left of V (concave).
The focal length f of the spherical mirror surface is defined as $-R/2$, where R is the radius of curvature of the mirror. In accordance with the sign convention of the previous page, $f > 0$ for a concave mirror and $f < 0$ for a convex mirror. The imaging equation for the spherical mirror can be rewritten as

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$
Reflection at Spherical Surfaces V

Ray 1: Enters from O' through C, leaves along same path
Ray 2: Enters from O' through F, leaves parallel to optical axis
Ray 3: Enters through O' parallel to optical axis, leaves along line through F and intersection of ray with mirror surface

\[s = 7 \text{ cm} \quad R = +8 \text{ cm} \quad f = -R/2 \quad \frac{1}{s'} = \frac{1}{f} - \frac{1}{s} \]

\[s' = ? \quad m = -\frac{s'}{s} = ? \]
Reflection at Spherical Surfaces VI

\[s = +17 \text{ cm} \quad R = -8 \text{ cm} \quad f = -R/2 = \]

\[\frac{1}{s'} = \frac{1}{f} - \frac{1}{s} = \]

\[s' = \quad m = - \frac{s'}{s} = \]
Reflection at Spherical Surfaces VII

Real, Inverted Image

Virtual Image, Not Inverted

\[s > f \quad \Rightarrow \quad \frac{1}{s'} = \frac{1}{f} - \frac{1}{s} > 0 \]
\[m = -\frac{s'}{s} < 0 \]

\[s < f \quad \Rightarrow \quad \frac{1}{s'} = \frac{1}{f} - \frac{1}{s} < 0 \]
\[m = -\frac{s'}{s} > 0 \]
At point P we apply the law of refraction to obtain

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

Using the small angle approximation we obtain

\[n_1 \theta_1 = n_2 \theta_2 \]

Substituting for the angles \(\theta_1 \) and \(\theta_2 \) we obtain

\[n_1 (\alpha - \varphi) = n_2 (\alpha' - \varphi) \]

Neglecting the distance QV and writing tangents for the angles gives

\[n_1 \left(\frac{h}{s} - \frac{h}{R} \right) = n_2 \left(\frac{h}{|s'|} - \frac{h}{R} \right) \]
Rearranging the equation we obtain

\[\frac{n_1}{s} - \frac{n_2}{|s'|} = \frac{n_1 - n_2}{R} \]

Using the same sign convention as for mirrors we obtain

\[\frac{n_1}{s} + \frac{n_2}{|s'|} = \frac{n_2 - n_1}{R} = P \]

P : power of the refracting surface
Refraction at Spherical Surfaces III

\[s = 7 \text{ cm} \quad R = +8 \text{ cm} \quad n_1 = 1.0 \quad n_2 = 4.23 \]

\[
\frac{n_1}{s} + \frac{n_2}{s'} = \frac{n_2 - n_1}{R} \quad \Rightarrow \quad s' = ?
\]
Example 2-2: Concept of imaging by a lens

Step 1:
Obtain the image after the first refracting surface.

Step 2:
Treat the image obtained above as a virtual object ($s < 0$), and find out its image after the second refracting surface.
2-9. Thin (refractive) lenses

(a) Converging, positive, or convex lenses

(b) Diverging, negative, or concave lenses
For surface 1:

\[
\frac{n_1}{s_1} + \frac{n_2}{s'_1} = \frac{n_2 - n_1}{R_1}
\]
The Thin Lens Equation II

For surface 1:

\[\frac{n_1}{s_1} + \frac{n_2}{s'_1} = \frac{n_2 - n_1}{R_1} \]

For surface 2:

\[\frac{n_2}{s_2} + \frac{n_1}{s'_2} = \frac{n_1 - n_2}{R_2} \]

Object for surface 2 is virtual, with \(s_2 \) given by:

\[s_2 = t - s'_1 \]

For a thin lens:

\[t \not\parallel s_2 , s'_1 \quad \Rightarrow \quad s_2 = -s'_1 \]

Substituting this expression we obtain:

\[\frac{n_1}{s_1} + \frac{n_2}{s'_1} - \frac{n_2}{s'_1} + \frac{n_1}{s_2'} = \frac{n_1}{s_1} + \frac{n_1}{s'_2} = \frac{n_2 - n_1}{R_1} + \frac{n_1 - n_2}{R_2} = P_1 + P_2 \]
Simplifying this expression we obtain:

\[
\frac{1}{s_1} + \frac{1}{s'} = \left(\frac{n_2 - n_1}{n_1}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)
\]

For the thin lens:

\[
s = s_1 \quad s' = s'_2 \quad \Rightarrow \quad \frac{1}{s} + \frac{1}{s'} = \left(\frac{n_2 - n_1}{n_1}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)
\]

The focal length for the thin lens is found by setting \(s = \infty \):

\[
s = \infty \quad \Rightarrow \quad \frac{1}{s'} = \frac{1}{f} = \left(\frac{n_2 - n_1}{n_1}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)
\]
The Thin Lens Equation IV

In terms of the focal length f the thin lens equation becomes:

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$

The focal length of a thin lens is positive for a convex lens, negative for a concave lens.
Image Formation by Thin Lenses

Convex Lens

Concave Lens

\[m = -\frac{s'}{s} \]
Convex Lens, focal length = 5 cm:

\[\frac{1}{s'} = \frac{1}{f} - \frac{1}{s} \]

\[f = +5 \text{ cm} \quad s = +9 \text{ cm} \quad \Rightarrow \quad s' = \]

\[m = -s'/s = \]
Image Formation by Concave Lens

Concave Lens, focal length = -5 cm:

\[\frac{1}{s'} = \frac{1}{f} - \frac{1}{s} \quad f = -5 \text{ cm} \quad s = +9 \text{ cm} \quad \Rightarrow \quad s' = \]

\[m = -s'/s = \]
Image Formation: Two-Lens System I

\[\frac{1}{s_1'} = \frac{1}{f_1} - \frac{1}{s_1} = \frac{s_1 - f_1}{s_1 f_1} \quad f_1 = +15 \text{ cm} \quad s_1 = +25 \text{ cm} \Rightarrow s_1' = \]

\[\frac{1}{s_2'} = \frac{1}{f_2} - \frac{1}{s_2} = \frac{s_2 - f_2}{s_2 f_2} \quad f_2 = -15 \text{ cm} \quad s_2 = \Rightarrow s_2' = \]

\[m = m_1 m_2 = \]
\[
\frac{1}{s'_1} = \frac{1}{f_1} - \frac{1}{s_1} \quad f_1 = +3.5 \text{ cm} \quad s_1 = +5.2 \text{ cm} \quad \Rightarrow \quad s'_1 = \\
\frac{1}{s'_2} = \frac{1}{f_2} - \frac{1}{s_2} \quad f_2 = +1.8 \text{ cm} \quad s_2 = \quad \Rightarrow \quad s'_2 = \\
\]

\[m = m_1 m_2 = \]
TABLE 2-1 SUMMARY OF GAUSSIAN MIRROR AND LENS FORMULAS

<table>
<thead>
<tr>
<th></th>
<th>Spherical surface</th>
<th>Plane surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflection</td>
<td>(\frac{\frac{1}{s} + \frac{1}{s'}}{f} = -\frac{R}{2})</td>
<td>(s' = -s)</td>
</tr>
<tr>
<td></td>
<td>(m = -\frac{s'}{s})</td>
<td>(m = +1)</td>
</tr>
<tr>
<td></td>
<td>Concave: (f > 0, R < 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Convex: (f < 0, R > 0)</td>
<td></td>
</tr>
<tr>
<td>Refraction Single surface</td>
<td>(\frac{n_1}{s} + \frac{n_2}{s'} = \frac{n_2 - n_1}{R})</td>
<td>(s' = -\frac{n_2}{n_1} s)</td>
</tr>
<tr>
<td></td>
<td>(m = -\frac{n_2 s'}{n_2 s})</td>
<td>(m = +1)</td>
</tr>
<tr>
<td></td>
<td>Concave: (R < 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Convex: (R > 0)</td>
<td></td>
</tr>
<tr>
<td>Refraction Thin lens</td>
<td>(\frac{1}{s} + \frac{1}{s'} = \frac{1}{f})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\frac{1}{f} = \frac{n_2 - n_1}{n_1} \left(\frac{1}{R_1} - \frac{1}{R_2} \right))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(m = -\frac{s'}{s})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concave: (f < 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Convex: (f > 0)</td>
<td></td>
</tr>
</tbody>
</table>
Vergence and refractive power: Diopter

\[
\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}
\]

reciprocals

\[
V + V' = P
\]

D > 0

D < 0

Vergence (V): curvature of wavefront at the lens

Refracting power (P)

Diopter (D): unit of vergence (reciprocal length in meter)
Two more useful equations

Stack multiple thin lenses back to back

\[P = P_1 + P_2 + P_3 + \cdots \quad \leftrightarrow \quad \frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3} + \cdots \]

Newton’s equation for the thin-lens

\[xx' = f^2 \]
2-12. Cylindrical lenses

(a) Convex

(b) Concave

© 2007 Pearson Prentice Hall, Inc.
Cylindrical lenses

Top view

Side view (b)

Parallel to cylinder axis

Line image