20. Fresnel equations

- EM Waves at an Interface
- Fresnel Equations: Reflection and Transmission Coefficients
- Brewster’s Angle
- Total Internal Reflection
- Evanescent Waves
- The Complex Refractive Index
- Reflection from Metals
We will derive the Fresnel equations

$r : \text{reflection coefficient}$

$\text{TE} : \quad r = \frac{E_r}{E} = \frac{\cos \theta - \sqrt{n^2 - \sin^2 \theta}}{\cos \theta + \sqrt{n^2 - \sin^2 \theta}}$

$\text{TM} : \quad r = \frac{E_r}{E} = \frac{n^2 \cos \theta - \sqrt{n^2 - \sin^2 \theta}}{n^2 \cos \theta + \sqrt{n^2 - \sin^2 \theta}}$

$t : \text{transmission coefficient}$

$\text{TE} : \quad t = \frac{E_t}{E} = \frac{2 \cos \theta}{\cos \theta + \sqrt{n^2 - \sin^2 \theta}}$

$\text{TM} : \quad t = \frac{E_t}{E} = \frac{2n \cos \theta}{n^2 \cos \theta + \sqrt{n^2 - \sin^2 \theta}}$
Figure 20-1 Defining diagram for incident, reflected, and transmitted rays at an XY-plane interface when the electric field is perpendicular to the plane of incidence, the TE mode.
EM Waves at an Interface

Incident beam: \[\vec{E}_i = \vec{E}_{oi} \exp\left[i\left(\vec{k}_i \cdot \vec{r} - \omega t\right)\right] \]

Reflected beam: \[\vec{E}_r = \vec{E}_{or} \exp\left[i\left(\vec{k}_r \cdot \vec{r} - \omega t\right)\right] \]

Transmitted beam: \[\vec{E}_t = \vec{E}_{ot} \exp\left[i\left(\vec{k}_t \cdot \vec{r} - \omega t\right)\right] \]

At the boundary between the two media (the \(x-y\) plane), all waves must exist simultaneously, and the tangential component must be equal on both sides of the interface.

Therefore, for all \(t\) and for all \(\vec{r}\) on the interface,

\[\hat{n} \times \vec{E}_i + \hat{n} \times \vec{E}_r = \hat{n} \times \vec{E}_t \]

\[\hat{n} \times \vec{E}_{oi} \exp\left[i\left(\vec{k}_i \cdot \vec{r} - \omega t\right)\right] + \hat{n} \times \vec{E}_{or} \exp\left[i\left(\vec{k}_r \cdot \vec{r} - \omega t\right)\right] = \hat{n} \times \vec{E}_{ot} \exp\left[i\left(\vec{k}_t \cdot \vec{r} - \omega t\right)\right] \]

Assuming that the wave amplitudes are constant, the only way that this can be true over the entire interface and for all \(t\) is if:

\[\left(\vec{k}_i \cdot \vec{r} - \omega t\right) = \left(\vec{k}_r \cdot \vec{r} - \omega t\right) = \left(\vec{k}_t \cdot \vec{r} - \omega t\right) \] : Phase matching at the boundary!
EM Waves at an Interface

\[(\vec{k}_i \cdot \vec{r} - \omega_i t) = (\vec{k}_r \cdot \vec{r} - \omega_r t) = (\vec{k}_i \cdot \vec{r} - \omega_i t)\]

At \(\vec{r} = 0 \), this results in
\[\omega_i t = \omega_r t = \omega_i t\]
\[\Rightarrow \omega_i = \omega_r = \omega_i \] (Frequency does not change at the boundary!)

At \(t = 0 \), this results in
\[\Rightarrow \vec{k}_i \cdot \vec{r} = \vec{k}_r \cdot \vec{r} = \vec{k}_i \cdot \vec{r} \] (Phases on the boundary does not change!)

Subtracting any pair of these factors results in
\[\left(\vec{k}_i - \vec{k}_r\right) \cdot \vec{r} = \left(\vec{k}_i - \vec{k}_i\right) \cdot \vec{r} = \left(\vec{k}_l - \vec{k}_r\right) \cdot \vec{r} = 0\]

This equation \(\vec{k}_i \cdot \vec{r} = \text{constant} \) is the equation for a plane perpendicular to \(\vec{k}_i \cdot \vec{r} \). Consequently the above relation implies that \(\vec{k}_i, \vec{k}_r, \) and \(\vec{k}_l \) are coplanar in the plane of incidence.
At \(t = 0 \),
\[
\vec{k}_i \cdot \vec{r} = \vec{k}_r \cdot \vec{r} = \vec{k}_t \cdot \vec{r} = \text{constant}
\]

Considering the relation for the incident and reflected beams,
\[
\vec{k}_i \cdot \vec{r} = \vec{k}_r \cdot \vec{r} \quad \Rightarrow \quad k_i r \sin \theta_i = k_r r \sin \theta_r
\]

Since the incident and reflected beams are in the same medium,

\[
k_i = k_r = \frac{n_i \omega}{c} \quad \Rightarrow \quad \sin \theta_i = \sin \theta_r \quad \Rightarrow \quad \theta_i = \theta_r : \text{law of reflection}
\]

Considering the relation for the incident and transmitted beams,
\[
\vec{k}_i \cdot \vec{r} = \vec{k}_t \cdot \vec{r} \quad \Rightarrow \quad k_i r \sin \theta_i = k_t r \sin \theta_t
\]

But the incident and transmitted beams are in different media,

\[
k_i = \frac{n_i \omega}{c} \quad k_t = \frac{n_t \omega}{c} \quad \Rightarrow \quad n_i \sin \theta_i = n_t \sin \theta_t : \text{law of refraction}
\]
From Maxwell's EM field theory, we have the boundary conditions at the interface for the TE case:

\[E_i + E_r = E_i \]
\[B_i \cos \theta_i - B_r \cos \theta_r = B_i \cos \theta_i \]

The above conditions imply that the tangential components of both \(\vec{E} \) and \(\vec{B} \) are equal on both sides of the interface. We have also assumed that \(\mu_i \approx \mu_r \approx \mu_0 \), as is true for most dielectric materials.

For the TM mode:

\[-E_i \cos \theta_i + E_r \cos \theta_r = -E_i \cos \theta_i \]
\[B_i + B_r = B_i \]
Recall that \(E = \nu B = \left(\frac{c}{n}\right)B \Rightarrow B = \frac{nE}{c} \)

Let \(n_1 = \) refractive index of incident medium
\(n_2 = \) refractive index of refracting medium

For the TE mode:

\[
E_i + E_r = E_t \\
n_1E_i \cos \theta_i - n_1E_r \cos \theta_r = n_2E_t \cos \theta_i
\]

For the TM mode:

\[
-E_i \cos \theta_i + E_r \cos \theta_r = -E_i \cos \theta_i \\
n_1E_i + n_1E_r = n_2E_t
\]
Eliminating E_ℓ from each set of equations and solving for the reflection coefficient we obtain

TE case: \[r = \frac{E_r}{E_i} = \frac{\cos \theta_i - n \cos \theta_i}{\cos \theta_i + n \cos \theta_i} \]

TM case: \[r = \frac{E_r}{E_i} = \frac{n \cos \theta_i - \cos \theta_i}{n \cos \theta_i + \cos \theta_i} \]

where \[n = \frac{n_2}{n_1} \]

We know that

\[\sin \theta_i = n \sin \theta_i \]

\[n \cos \theta_i = n \sqrt{1 - \sin^2 \theta_i} = n \sqrt{\frac{\sin^2 \theta_i}{n^2}} = \sqrt{n^2 - \sin^2 \theta_i} \]
Now we have derived the Fresnel Equations

Substituting we obtain the Fresnel equations for reflection coefficients r:

TE case: $r = \frac{E_r}{E_i} = \frac{\cos \theta_i - \sqrt{n^2 - \sin^2 \theta_i}}{\cos \theta_i + \sqrt{n^2 - \sin^2 \theta_i}}$

TM case: $r = \frac{E_r}{E_i} = \frac{n^2 \cos \theta_i - \sqrt{n^2 - \sin^2 \theta_i}}{n^2 \cos \theta_i + \sqrt{n^2 - \sin^2 \theta_i}}$

For the transmission coefficient t:

TE case: $t = \frac{E_t}{E_i} = \frac{2 \cos \theta_i}{\cos \theta_i + \sqrt{n^2 - \sin^2 \theta_i}}$

TM case: $t = \frac{E_t}{E_i} = \frac{2n \cos \theta_i}{n^2 \cos \theta_i + \sqrt{n^2 - \sin^2 \theta_i}}$

TE: $t = r + 1$

TM: $nt = r + 1$

These mean just the boundary conditions
Power : Reflectance(R) and Transmittance(T)

The quantities \(r \) and \(t \) are ratios of electric field amplitudes.

The ratios \(R \) and \(T \) are the ratios of reflected and transmitted powers, respectively, to the incident power:

\[
R = \frac{P_r}{P_i}, \quad T = \frac{P_t}{P_i}
\]

From conservation of energy:

\[
P_i = P_r + P_t \quad \Rightarrow \quad 1 = R + T
\]

We can express the power in each of the fields in terms of the product of an irradiance and area:

\[
P_i = I_i A_i, \quad P_r = I_r A_r, \quad P_t = I_t A_t
\]

\[
\Rightarrow \quad I_i A_i = I_r A_r + I_t A_t
\]

\[
I_i \cos \theta_i = I_r \cos \theta_r + I_t \cos \theta_t
\]

\[
I_i \cos \theta_i = I_r \cos \theta_r + I_t \cos \theta_t
\]

But \(I = \frac{1}{2} n \varepsilon_0 c E_0^2 \) \(\Rightarrow \)

\[
\frac{1}{2} n \varepsilon_0 c E_0^2 \cos \theta_i = \frac{1}{2} n \varepsilon_0 c E_0^2 \cos \theta_r + \frac{1}{2} n \varepsilon_0 c E_0^2 \cos \theta_t
\]

\[
\Rightarrow \quad I = E_{o_r}^2 + \frac{n_2 E_0^2 \cos \theta_r}{r \cos \theta_i} = \frac{E_{o_t}^2}{r \cos \theta_i} \Rightarrow R + T
\]

\[
R = \frac{E_{o_r}^2}{E_{o_i}^2} = r^2 \quad T = n \left(\frac{\cos \theta_t}{\cos \theta_i} \right) \frac{E_{o_t}^2}{E_{o_i}^2} = n \left(\frac{\cos \theta_t}{\cos \theta_i} \right) t^2
\]

\[
R = r r^* = |r|^2 \quad T = \left(n \frac{\cos \theta_t}{\cos \theta_i} \right) t t^* = \left(n \frac{\cos \theta_t}{\cos \theta_i} \right) |t|^2
\]
20-2. External and Internal Reflection

External reflection: \(n_1 < n_2 \implies n = \frac{n_2}{n_1} > 1 \)

Internal reflection: \(n_1 > n_2 \implies n = \frac{n_2}{n_1} < 1 \)

For internal reflection,
\[\sqrt{n^2 - \sin^2 \theta_i} \] may be an imaginary number \(\implies \) total internal reflection.

Note Brewster's angle \(\theta_p \) (for polarizing angle) for the TM case:
\[\implies r(\theta_p) = 0 \text{ when } \theta_p = \tan^{-1} n \]

\(\implies \) No reflection of TM mode for Brewster's angle.
Derivation of Brewster’s Angle

Brewster's angle θ_p (for polarizing angle) for the TM case:

$$r(\theta_p) = 0 = \frac{n^2 \cos \theta_p - \sqrt{n^2 - \sin^2 \theta_p}}{n^2 \cos \theta_p + \sqrt{n^2 - \sin^2 \theta_p}}$$

$$\Rightarrow \quad n^4 \cos^2 \theta_p = n^2 - \sin^2 \theta_p$$

$$n^4 \cos^2 \theta_p - n^2 + \sin^2 \theta_p = 0$$

$$\Rightarrow \quad n^2 = \frac{1 \pm \sqrt{1 - 4 \cos^2 \theta_p \sin^2 \theta_p}}{2 \cos^2 \theta_p} = \frac{1 \pm \sqrt{1 - 4(1 - \sin^2 \theta_p) \sin^2 \theta_p}}{2 \cos^2 \theta_p}$$

$$= \frac{1 \pm \sqrt{1 - 4 \sin^2 \theta_p + 4 \sin^4 \theta_p}}{2 \cos^2 \theta_p} = \frac{1 \pm (1 - 2 \sin^2 \theta_p)}{2 \cos^2 \theta_p}$$

$$n^2 = \frac{\sin^2 \theta_p}{\cos^2 \theta_p} \quad \Rightarrow \quad n = \frac{\sin \theta_p}{\cos \theta_p} \quad \Rightarrow \quad \theta_p = \tan^{-1} n$$

For $n = 1.50$, $\theta_p = 56.31^\circ$
For internal reflection: \(n = \frac{n_2}{n_1} < 1 \)

For \(\theta = \theta_c = \sin^{-1} n \), \(r = 1 \) for both (TE and TM) cases.

For \(\theta > \theta_c \), called total internal reflection (TIR),

\[\Rightarrow r \text{ is a complex number} \]

\[\Rightarrow R = rr^* = 1. \]

TE case: \[r = \frac{E_r}{E_i} = \frac{\cos \theta_i - i\sqrt{\sin^2 \theta_i - n^2}}{\cos \theta_i + i\sqrt{\sin^2 \theta_i - n^2}} \]

TM case: \[r = \frac{E_r}{E_i} = \frac{n^2 \cos \theta_i - i\sqrt{n^2 \sin^2 \theta_i - n^2}}{n^2 \cos \theta_i + i\sqrt{n^2 \sin^2 \theta_i - n^2}} \]
20-3. Phase changes on External Reflection

When \(r \) is a real number, as it always is for external reflection, then the phase shift is \(0^\circ \) for \(r > 0 \), and the phase shift is \(180^\circ (= \pi) \) for \(r < 0 \).

For \(r < 0 \):

\[
E_r = -|r|E_i
\]

\[
= \exp(i\pi)|r|E_0\exp\left[i(\vec{k} \cdot \vec{r} - \omega t)\right]
\]

\[
= |r|E_0\exp\left[i(\vec{k} \cdot \vec{r} - \omega t + \pi)\right]
\]

수직입사인 경우

\(\pi \)-phase 변화, 즉, 위상 반전이 일어나는가?
Why two r’s are opposite in their signs at $\theta_i \to 0$?

- $r_{TM} > 0 \quad \Rightarrow \quad E_3$ is opposite to E_1
- $r_{TE} < 0 \quad \Rightarrow \quad E_3$ is opposite to E_1

The opposite signs in r’s correspond completely to the phase shift of π after reflection in both cases.
Phase Shifts for Internal Reflection

When \(\theta < \theta_c \) then \(r \) is a real number and the phase shift will be 0° for \(r > 0 \) and 180° for \(r < 0 \).

When \(\theta \geq \theta_c \) (TIR case) then \(r \) is complex and for both the TE and TM cases has the form:

\[
r = \frac{a - ib}{a + ib} = \frac{\cos \alpha - i \sin \alpha}{\cos \alpha + i \sin \alpha} = e^{-ia} = e^{-i2a} = e^{-i\phi}
\]

\[
\Rightarrow \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{b}{a} \quad \phi = 2\alpha
\]

\(\phi \) is the phase shift for total internal reflection (TIR).

TE case:
\[
r = \frac{E_r}{E_i} = \frac{\cos \theta_t - i\sqrt{\sin^2 \theta_t - n^2}}{\cos \theta_t + i\sqrt{\sin^2 \theta_t - n^2}}
\]

\[
a = \cos \theta_t \quad b = \sqrt{\sin^2 \theta_t - n^2}
\]

\[
\Rightarrow \tan \alpha = \tan\left(\frac{\phi}{2}\right) = \frac{\sqrt{\sin^2 \theta_t - n^2}}{\cos \theta}
\]

\[
\phi_{TE} = 2\tan^{-1}\left(\frac{\sqrt{\sin^2 \theta_t - n^2}}{\cos \theta}\right)
\]

A similar analysis for the TM case gives:

\[
\phi_{TM} = 2\tan^{-1}\left(\frac{\sqrt{\sin^2 \theta_t - n^2}}{n^2 \cos \theta}\right)
\]
Phase Shifts for Internal Reflection

\[\phi_{TM} = 2 \tan^{-1} \left(\frac{\sqrt{\sin^2 \theta_i - n^2}}{n^2 \cos \theta} \right) \]

\[\phi_{TE} = 2 \tan^{-1} \left(\frac{\sqrt{\sin^2 \theta_i - n^2}}{\cos \theta} \right) \]
Phase Shifts for Internal Reflection

\[\phi_{TM} = \begin{cases}
180^\circ (\pi) & \theta < \theta_p \\
0^\circ & \theta_p < \theta < \theta_c \\
2\tan^{-1} \left(\frac{\sin^2 \theta_i - n^2}{n^2 \cos \theta} \right) & \theta < \theta_c
\end{cases} \]

\[\phi_{TE} = \begin{cases}
0^\circ & \theta < \theta_c \\
2\tan^{-1} \left(\frac{\sin^2 \theta_i - n^2}{\cos \theta} \right) & \theta > \theta_c
\end{cases} \]

\[\phi_{TM} - \phi_{TE} : \begin{cases}
= 0^\circ & \theta < \theta_c \\
> 0^\circ & \theta > \theta_c
\end{cases} \]

Note \(\phi_{TM} - \phi_{TE} = 45^\circ \) near \(\theta_i = 53^\circ \) when \(n = 1.5 \)
Note $\phi_{TM} - \phi_{TE} = 45^\circ$ at $\theta_i = 53^\circ$ when $n = 1.5$
20-5. Evanescent Waves at an Interface

Incident beam: \(\vec{E}_i = \vec{E}_{oi} \exp\left[i\left(\vec{k}_i \cdot \vec{r} - \omega t\right)\right] \)

Reflected beam: \(\vec{E}_r = \vec{E}_{or} \exp\left[i\left(\vec{k}_r \cdot \vec{r} - \omega t\right)\right] \)

Transmitted beam: \(\vec{E}_t = \vec{E}_{ot} \exp\left[i\left(\vec{k}_t \cdot \vec{r} - \omega t\right)\right] \)

For the transmitted beam:
\[
E_t = E_{ot} \exp\left[i\left(\vec{k}_t \cdot \vec{r} - \omega t\right)\right]
\]

\[
\vec{k}_t \cdot \vec{r} = (k_i \sin \theta + k_i \cos \theta \cdot \bar{y}) \cdot (x \bar{x} + y \bar{y})
= k_i (x \sin \theta + y \cos \theta)
\]

But, \(\cos \theta_t = \sqrt{1 - \sin^2 \theta_t} = \sqrt{1 - \frac{\sin^2 \theta}{n}} \)

When \(\sin \theta_i > n \) \(\text{ (total internal reflection), then}: \)
\[
\cos \theta_i = i \sqrt{\frac{\sin^2 \theta_i}{n}} - 1 \Rightarrow \text{ a purely imaginary number}
\]
Evanescent Waves at an Interface

For the transmitted beam with an TIR condition \((\sin \theta_1 > n)\), we can write the phase factor as:

\[
\vec{k}_t \cdot \vec{r} = k_t \left(x \frac{\sin \theta_1}{n} + i y \sqrt{\frac{\sin^2 \theta_1}{n} - 1} \right)
\]

Defining the coefficient \(\alpha\):

\[
\alpha = k_t \sqrt{\frac{\sin^2 \theta_1}{n} - 1} = \frac{2\pi}{\lambda_t} \sqrt{\frac{\sin^2 \theta_1}{n} - 1}
\]

We can write the transmitted wave as:

\[
E_t = E_{0t} \exp \left[i \left(\frac{k_t x \sin \theta_1}{n} - \omega t \right) \right] \exp(-\alpha y)
\]

The evanescent wave amplitude will decay rapidly as it penetrates into the lower refractive index medium.

Penetration depth:

\[
E_i = \left(\frac{1}{e} \right) E_{0t} \Rightarrow h = \frac{1}{\alpha} = \frac{\lambda}{2\pi} \sqrt{\frac{\sin^2 \theta_1}{n^2} - 1}
\]

Note that the incident and reflection waves form a standing wave in x direction.
Frustrated TIR

\(T_p = \) fraction of intensity transmitted across gap

\[T_p = \frac{1}{(\alpha \sinh^2 \gamma + 1)} \]

\[\alpha = \left(\frac{n^2 - 1}{2n} \right)^2 \left[(n^2 + 1) \sin^2 \theta_i - 1 \right] \left(\frac{\cos^2 \theta_i (n^2 \sin^2 \theta_i - 1)}{n^2 \sin^2 \theta_i - 1} \right) \]

\[\gamma = 2\pi \left(\frac{d}{\lambda} \right) (n^2 \sin^2 \theta_i - 1)^{1/2} \]

Fig. 2. (a) Tunneling of light through the gap between the regions 1 and 2; frustrated total internal reflection. (b) The fraction of transmitted light vs \((d/\lambda)\) plotted for two different values of the refractive index \(n\).
For a material with conductivity (σ)

$$\tilde{n} = \sqrt{1 + i \left(\frac{\sigma}{\varepsilon_0 \omega} \right)} = n_R + i n_I$$

$$\tilde{n}^2 = 1 + i \left(\frac{\sigma}{\varepsilon_0 \omega} \right) = n_R^2 - n_I^2 + i 2n_R n_I$$

Solving for the real and imaginary components we obtain:

$$n_R^2 - n_I^2 = 1 \quad 2n_R n_I = \frac{\sigma}{\varepsilon_0 \omega} \quad \Rightarrow \quad n_R = \frac{\sigma}{2 n_I \varepsilon_0 \omega}$$

$$\Rightarrow \quad \left(\frac{\sigma}{2 n_I \varepsilon_0 \omega} \right)^2 - n_I^2 = 1 \quad \Rightarrow \quad n_I^4 - n_I^2 - \left(\frac{\sigma}{2 \varepsilon_0 \omega} \right)^2 = 0$$

From the quadratic solution we obtain:

$$n_I^2 = \frac{1 \pm \sqrt{1 + 4 \left(\frac{\sigma}{2 \varepsilon_0 \omega} \right)^2}}{2}$$

$$n_I^2 = \frac{1 + \sqrt{1 + 4 \left(\frac{\sigma}{2 \varepsilon_0 \omega} \right)^2}}{2}$$

We need to take the positive root because n_I is a real number.
For most metals, with light in the microwave region, \(\frac{\sigma}{\omega} \gg \varepsilon_0 \)

With this approximation, the complex refractive index for metals becomes

\[
\begin{align*}
n_i^2 &\approx \frac{\sigma}{2 \varepsilon_0 \omega} \quad \Rightarrow \quad n_i = \sqrt{\frac{\sigma}{2 \varepsilon_0 \omega}} \quad n_R = \frac{\sigma}{2 n_i \varepsilon_0 \omega} = \sqrt{\frac{\sigma}{2 \varepsilon_0 \omega}}
\end{align*}
\]

Substituting our expression for the complex refractive index back into our expression for the electric field we obtain

\[
\begin{align*}
\tilde{E} &= \tilde{E}_0 \exp \left[i \left(\tilde{k} \cdot \tilde{r} - \omega t \right) \right] = \tilde{E}_0 \exp \left\{ i \left[(n_R + i n_i) \frac{\omega}{c} (\hat{u}_k \cdot \tilde{r}) - \omega t \right] \right\} \\
&= \tilde{E}_0 \exp \left\{ i \omega \left[\frac{n_R}{c} (\hat{u}_k \cdot \tilde{r}) - t \right] \right\} \exp \left[- \frac{n_i \omega}{c} (\hat{u}_k \cdot \tilde{r}) \right]
\end{align*}
\]

The first exponential term is oscillatory. The EM wave propagates with a velocity of \(n_R / c \).
The second exponential has a real argument (absorbed).
The second term leads to absorption of the beam in metals due to inducing a current in the medium. This causes the irradiance to decrease as the wave propagates through the medium.

\[I \equiv \tilde{E}\tilde{E}^* = \tilde{E}_0\tilde{E}_0^* \exp \left[- \frac{2n_I \omega (\hat{u}_k \cdot \vec{r})}{c} \right] \]

\[I = I_0 \exp \left[- \frac{2n_I \omega (\hat{u}_k \cdot \vec{r})}{c} \right] = I_0 \exp \left[- \alpha (\hat{u}_k \cdot \vec{r}) \right] \]

The absorption coefficient is defined: \[\alpha = \frac{2n_I \omega}{c} = \frac{4\pi n_I}{\lambda} \]
20-7. Reflection from Metals

Reflection from metals is analyzed by substituting the complex refractive index \tilde{n} in the Fresnel equations:

TE case:
$$ r = \frac{E_r}{E_i} = \frac{\cos \theta_i - \sqrt{n^2 - \sin^2 \theta_i}}{\cos \theta_i + \sqrt{n^2 - \sin^2 \theta_i}} $$

TM case:
$$ r = \frac{E_r}{E_i} = \frac{\tilde{n}^2 \cos \theta_i - \sqrt{\tilde{n}^2 - \sin^2 \theta_i}}{\tilde{n}^2 \cos \theta_i + \sqrt{\tilde{n}^2 - \sin^2 \theta_i}} $$

Substituting $\tilde{n} = n_R + i n_I$ we obtain:

TE case:
$$ r = \frac{E_r}{E_i} = \frac{\cos \theta_i - \sqrt{(n_R^2 - n_I^2 - \sin^2 \theta_i) + i(2n_R n_I)}}{\cos \theta_i + \sqrt{(n_R^2 - n_I^2 - \sin^2 \theta_i) + i(2n_R n_I)}} $$

TM case:
$$ r = \frac{E_r}{E_i} = \frac{\left[(n_R^2 - n_I^2) + i(2n_R n_I)\right] \cos \theta_i - \sqrt{(n_R^2 - n_I^2 - \sin^2 \theta_i) + i(2n_R n_I)}}{\left[(n_R^2 - n_I^2) + i(2n_R n_I)\right] \cos \theta_i + \sqrt{(n_R^2 - n_I^2 - \sin^2 \theta_i) + i(2n_R n_I)}} $$
Reflection from Metals at normal incidence ($\theta_i=0^\circ$)

At normal incidence, $\theta_i = 0^\circ$:

TE & TM cases:

\[
r = \frac{E_r}{E_i} = \frac{\cos \theta_i - \sqrt{n_R^2 - n_i^2 - \sin^2 \theta_i} + i(2n_R n_i)}{\cos \theta_i + \sqrt{n_R^2 - n_i^2 - \sin^2 \theta_i} + i(2n_R n_i)}
\]

\[
= \frac{1 - \sqrt{(n_R^2 - n_i^2)} + i(2n_R n_i)}{1 + \sqrt{(n_R^2 - n_i^2)} + i(2n_R n_i)} = \frac{1 - \sqrt{(n_R - i n_i)^2}}{1 + \sqrt{(n_R - i n_i)^2}}
\]

\[
\therefore \quad r = \frac{1 - (n_R - i n_i)}{1 + (n_R - i n_i)}
\]

The power reflectance R is given by

\[
R = r r^* = \left[\frac{1 - (n_R - i n_i)}{1 + (n_R - i n_i)} \right] \left[\frac{1 - (n_R + i n_i)}{1 + (n_R + i n_i)} \right] = \left(\frac{1 - 2n_R + n_R^2 + n_i^2}{1 + 2n_R + n_R^2 + n_i^2} \right)
\]

\[
R = \frac{(n_R - 1)^2 + n_i^2}{(n_R + 1)^2 + n_i^2}
\]
Reflection from Metals

Reflectance

At normal incidence
(from Hecht, page 113)

Figure 20-10 Reflectance from metal surfaces by using Fresnel’s equations. The values of n_0 and n_i are given for sodium light of $\lambda = 589.3$ nm.

Figure 4.42 Reflectance versus wavelength for silver, gold, copper, and aluminum.