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Nanophotonics
Nanophotonics, Paras N. Prasad, 2004, John Wiley & Sons, Inc., Hoboken, New Jersey., ISBN 0-471-64988-0

Both photons and electrons 
are elementary particles that 
simultaneously exhibit particle 
and wave-type behavior.

Photons and electrons may 
appear to be quite different as 
described by classical physics, 
which defines photons as 
electromagnetic waves 
transporting energy and 
electrons as the fundamental 
charged particle (lowest mass) 
of matter.

A quantum description, on the 
other hand, reveals that 
photons and electrons can be 
treated analogously and 
exhibit many similar 
characteristics.

Photons and Electrons
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In a “free-space” propagation, there is no interaction potential or it is constant in space. 
For photons, it simply implies that no spatial variation of refractive index n occurs.

The wavevector dependence of energy is different for photons (linear dependence) and electrons (quadratic dependence).

For free-space propagation, all values of frequency  for photons and energy E for electrons are permitted. 
This set of allowed continuous values of frequency (or energy) form together a band, 
and the band structure refers to the characteristics of the dependence of the frequency (or energy) on the wavevector k.

Free-Space Propagation of photons and electrons

Band structure (Dispersion relation)

Photons Electrons
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Confinement of Photons and Electrons

In the case of photons, 
the confinement can be introduced by trapping light in a region of high refractive index or with high surface reflectivity.

The confinement of electrons also leads to modification of their wave properties and produces quantization
—that is, discrete values for the possible eigenmodes.

The field distribution and the corresponding propagation constant 
are obtained by the solution of the Maxwell’s equation and 
imposing the boundary conditions (defining the boundaries of the 
waveguide and the refractive index contrast). The solution of the 
wave equation shows that the confinement produces certain 
discrete sets of field distributions called eigenmodes, which are 
labeled by quantum numbers (integer).

The corresponding wave equation for electrons is the 
Schrödinger equation. The potential confining the electron is the 
energy barrier—that is, regions where the potential energy V is 
much higher than the energy E of the electron.

Photons Electrons

Photons Electrons
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MANIFESTATIONS OF QUANTUM CONFINEMENT

Size Dependence of Optical Properties. Quantum confinement produces a blue shift in the bandgap as well as appearance 
of discrete subbands corresponding to quantization along the direction of confinement. 
As the dimensions of confinement increase, the bandgap decreases; hence the interband transitions shift to longer 
wavelengths, finally approaching the bulk value for a large width.

Increase of Oscillator Strength. Quantum confinement produces a major modification in the density of states both for valence
and conduction bands. The oscillator strength of an optical transition for an interband transition depends on the joint density of 
states of the levels in the valence band and the levels in the conduction bands, between which the optical transition occurs.

New Intraband Transitions. In quantum-confined structures, there are sub-bands characterized by the different quantum 
numbers (n = 1, 2, . . .)These new transitions are in IR and have been utilized to produce inter sub-band detectors and lasers, 
the most interesting of which are quantum cascade lasers

Increased Exciton Binding. Quantum confinement of electrons and holes also leads to enhanced binding between them and 
thereby produces increased exciton binding energy. Thus, excitonic resonances are very pronounced in quantum-confined 
structures and, in the strong confinement conditions, can be seen even at room temperature.

Increase of Transition Probability in Indirect Gap Semiconductor. In the quantum-confined structures, confinement of 
electrons produces a reduced uncertainty x in its position and, consequently, produces a larger uncertainty k in its quasi-
momentum. Confinement, therefore, relaxes the quasi-momentum k selection rule, thus allowing enhanced emission to be 
observed in porous silicon and silicon nanoparticles.
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Propagation Through a Classically Forbidden Zone: Tunneling

In a classical picture, the photons and electrons are completely confined in the regions of confinement.
For photons, it is seen by the ray optics for the propagating wave. 
Similarly, classical physics predicts that, once trapped within the potential energy barriers where the energy E of an electron is 
less than the potential energy V due to the barrier, the electron will remain completely confined within the walls. 

However, the wave picture does not predict so. 
The field distribution of light confined in a waveguide extends beyond the boundaries of the waveguide.

This light leakage generates an electromagnetic field 
called evanescent wave.

In an analogous fashion, an electron shows 
a leakage through regions where E < V. 
The wavefunction extending beyond the box into the 
region of V > E decays exponentially, just like the 
evanescent wave for confined light. 
The transmission probability is

Photons Electrons

PhotonsElectrons



Metal 

Nano Plasmonics

NANOSCALE OPTICAL INTERACTIONS

Axial Nanoscopic Localization - Evanescent Wave

The penetration depths dp for the visible light are 50–100 nm.

Axial Nanoscopic Localization - Surface Plasmon Resonance

Lateral Nanoscopic Localization – NSOM, SNOM
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Localization Under a Periodic Potential: Bandgap

The solution of the Schrödinger equation for the energy of electrons, now subjected to the periodic potential V, produces a 
splitting of the electronic band: the lower energy band is called the valence band, the higher energy band is called the conduction 
band. These two bands are separated by a “forbidden” energy gap, the width of which is called the bandgap.

In the case of a photonic crystal, the eigenvalue equation for photons can be used to calculate the dispersion relation  versus k.
A similar type of band splitting is observed for a photonic crystal, and a forbidden frequency region exists between the two bands, 
similar to that between the valence and the conduction band of an electronic crystal, which is often called the photonic bandgap.

Both photons and electrons show an analogous behavior when subjected to a periodic potential.

PhotonsElectrons

Electronic
bandgap Photnic

bandgap



Maxwell's Equations

Matrix Theory of Multilayer Optics: Transfer Matrix and Scattering Matrix

Some basics



(In a medium) Maxwell's Equations

(In Free Space) Maxwell's Equations

 (In a Linear, Nondispersive, Homogeneous, and Isotropic Medium)

Maxwell's Equations



Maxwell's Equations

(In a inhomogeneous Medium)   position dependent

(In an Anisotropic Medium) 

(In a Dispersive Medium)   impulse response function

 transfer function = FT of (t)



Maxwell's Equations 
For monochromatic electromagnetic waves

(In a source-free Medium) 

(In a Linear, Nondispersive, Homogeneous, source-free, and Isotropic Medium)

 Helmholtz Equation

(In a Inhomogeneous medium)  Generalized Helmholtz Equations 



Matrix Theory of Multilayer Optics: Transfer Matrix and Scattering Matrix

Wave-Transfer Matrix:

Wave-Transfer Matrix
(Transmission matrix)

For a multilayered medium,

 Identical to the ray transfer (ABCD) matrix

Scattering Matrix:

the complex amplitudes of the forward and backward waves 
through the boundaries (PORTs) of a multilayered medium

the outgoing waves are expressed in terms of the incoming waves

incomingoutgoing

Port-1 Port-2

Port-1 Port-2

Port-1Port-2

Port-1

Port-2

tij, rij: transmission and reflection coefficients from port-I to port-j

 The S matrix of a cascade of elements is not the product of the S matrices of the constituent elements.

S

M



Relation between Scattering Matrix and Wave-Transfer Matrix

※ These equations are not valid in the limiting cases when t21 = 0 or D = 0.

Two Cascaded Systems



Two Cascaded Systems: Airy’s Formulas

If the two cascaded systems are mediated by propagation through a homogeneous
medium, 

where, 



Conservation Relations for Lossless Media

lossless

The incoming and outgoing optical powers must be equal.

If the media at the input and output planes have the same impedance and refractive index,
By choosing the incoming amplitudes U1

(+) and U2
(-) to be (1,0), (0.1), and (1,1),

From the conversion relation 
Between M and S



Lossless Reciprocal Systems
For lossless systems with reciprocal symmetry, namely systems whose transmission/reflection 
in the forward and backward directions are identical, we have t21 = t12 ≡ t and r21 = r12 ≡ r.



ONE-DIMENSIONAL PHOTONIC CRYSTALS

For an ON-AXIS wave traveling along the z axis and polarized in the X direction,

For an OFF-AXIS wave, i.e., a wave traveling in an arbitrary direction in the x-z plane,

for TM off-axis wave

From the Generalized Helmholtz equation, 

One-dimensional (I D) photonic crystals are dielectric structures 
whose optical properties vary periodically in one direction,

 Before embarking on finding solutions to these eigenvalue problems, 
we first examine the conditions imposed on the propagating modes by 
the translational symmetry associated with the periodicity. 



Bloch Mode (Block Wave)
On-Axis Bloch Modes

1D periodic medium is invariant to translation by the distance  along the axis of periodicity. 
 Optical modes must have the form



The Bloch mode is thus a plane wave exp(-jKz) with propagation constant K, modulated by a periodic function pK(z), 
which has the character of a standing wave.

 Bloch mode (wave)



B. Matrix Optics of 1D Periodic Media
Each unit cell is a lossless reciprocal system, and represented by a generic unimodular wave-transfer matrix,  
And, the medium is a Bragg grating with an infinite number of segments (unit cells).

: recurrence relations

Eigenvalue Problem and Bloch Modes for the 1D periodic medium:
By definition, the modes of the periodic medium are self-reproducing waves after transmission through a distance ,

: Eigen value problem

Eigenvectors 

Eigen values 



Dispersion Relation and Photonic Band Structure for the 1D periodic medium:
The dispersion relation relates the Bloch wavenumber K and the angular frequency .

 Dispersion relation (-K relation)

 cos(2K/g) is a periodic function of K of period g = 2/

 It is common to limit the domain of the dispersion relation to a period 
with values of K in the interval [-g/2. g/2] or [-/. /] (First Brillouin zone)

 Corresponding precisely to limiting the phase  to [-. ]  (First Brillouin zone)

 Propagation regime, where |cos | =  

 Photonic bandgap regime, where 

 Bragg frequency







Phase and Group Velocities

:

Band 
edges

For the mode at the bottom of 
the upper band, greater energy 
is localized in the layers with 
the lower refractive index.

The mode at the top of the lower 
band, has greater energy in the 
dielectric layers with the higher
refractive index. 

As the edges of the bandgap 
are approached, from below 
or above, this index increases 
substantially, so that the 
group velocity is much 
smaller, i.e., optical pulses 
are very slows near the 
edges of the bandgap.



Off-Axis Dispersion Relation and Band Structure
: The same equation to the case of on-axis, but now

depends on the angles of incidence within the layers of each 
segment and on the state of polarization (TE or TM).

Oblique TM wave 
propagating at the 
Brewster angle,

photonic bandgap 
cannot occur at all.



This region is thus bounded by the line ( )

Omnidirectional 
reflection regions

Omnidirectional Reflection
Under certain conditions and within a specified range of angular frequencies, the periodic medium acts 
as a perfect mirror, totally reflecting waves incident from any direction and with any polarization!


