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Introduction and basics
Introduction to Nanophotonics
Nature of diffraction
Fourier analysis in linear systems (Goodman 2.1)
Plane waves and spatial frequency (lizuka 1.1)
Angular spectra in beam propagation
Optical properties of materials: dielectrics and metals

Surface plasmon-polaritons
Dispersion relation of single metal-dielectric interfaces
Surface plasmon Excitation
EM energy density in metals
Localized particle plasmons — Rayleigh& Mie scattering
Dispersion relation of metal nanorods and nanotips
Dispersion relation of SPPs on thin metal films
Dielectric loaded SPP waveguides
SPP waveguides
Metal-Insulator-Metal plasmonic slot-waveguides
SPP waveguide sensors
Surface-plasmon mediated light sources
SPP Photovoltaic
Summary-Nanoplasmonics-Enhancement of optical processes is severely limited by the metal loss




Nanophotonics

Nanophotonics, Paras N. Prasad, 2004, John Wiley & Sons, Inc., Hoboken, New Jersey., ISBN 0-471-64988-0

Photons and Electrons

Both photons and electrons
are elementary particles that
simultaneously exhibit particle
and wave-type behavior.

Photons and electrons may
appear to be quite different as
described by classical physics,
which defines photons as
electromagnetic waves
transporting energy and
electrons as the fundamental
charged particle (lowest mass)
of matter.

A quantum description, on the
other hand, reveals that
photons and electrons can be
treated analogously and
exhibit many similar
characteristics.

Table 2.1. Similarities in Characteristics of Photons and Electrons

Photons Electrons

Wavelength
: /
N N
v P mv

Eigenvalue (Wave) Equation

1 {w\2 N ‘J'-I,Z
vty x}B{r}= =) B Fils(r) = ——(V - V + Fr)h(r) = Ei
1 &(r) ¢/ 2m
Free-Space Propagation
Plane wave Plane wave:
E= {%}EO(eik'l'—uJ? + (?—r'l\'-l'+u)?) = C(er'k'l'—mf + (?—r'k'l'-l-m?)

k = wavevector, a real quantity k = wavevector, a real quantity

Interaction Potential in a Medium

Dielectric constant (refractive index) Coulomb interactions

Propagation Through a Classically Forbidden Zone
Photon tunneling (evanescent wave) with
wavevector, Kk, imaginary and hence
amplitude decaying exponentially in the
forbidden zone

Electron-tunneling with the amplitude
(probability) decaying exponentially in
the forbidden zone

Localization
Strong scattering derived from large variations  Strong scattering derived from a large
in dielectric constant (e.g., in photonic crystals) variation in Coulomb interactions (e.g., in
electronic semiconductor crystals)

Cooperative Effects
Nonlinear optical interactions Many-body correlation
Superconducting Cooper pairs

Biexciton formation
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Free-Space Propagation of photons and electrons I —

In a “free-space” propagation, there is no interaction potential or it is constant in space.
For photons, it simply implies that no spatial variation of refractive index n occurs.

The wavevector dependence of energy is different for photons (linear dependence) and electrons (quadratic dependence).
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Figure 2.1. Dispersion relation showing the dependence of energy on the wavevector for a
free-space propagation. (a) Dispersion for photons. (b) Dispersion for electrons.

Band structure (Dispersion relation)

For free-space propagation, all values of frequency for photons and energy E for electrons are permitted.

This set of allowed continuous values of frequency (or energy) form together a band,
and the band structure refers to the characteristics of the dependence of the frequency (or energy) on the wavevector k.



Confinement of Photons and Electrons

Nano Plasmonics
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In the case of photons,

the confinement can be introduced by trapping light in a region of high refractive index or with high surface reflectivity.

The confinement of electrons also leads to modification of their wave properties and produces quantization

—that is, discrete values for the possible eigenmodes.
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Figure 2.2. Confinements of photons and electrons in various dimensions and the configura-
tions used for them. The propagation direction is z.

Electrons

Confinement of Electron

Quantum well

T

Quantum wire

Quantum dot

The field distribution and the corresponding propagation constant
are obtained by the solution of the Maxwell’'s equation and
imposing the boundary conditions (defining the boundaries of the
waveguide and the refractive index contrast). The solution of the
wave equation shows that the confinement produces certain
discrete sets of field distributions called eigenmodes, which are

labeled by quantum numbers (integer).

The corresponding wave equation for electrons is the
Schrodinger equation. The potential confining the electron is the
energy barrier—that is, regions where the potential energy V is
much higher than the energy E of the electron.
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Figure 2.3. (A) Electric field distribution for TE modes » = 0, 1,

with one-dimensional confinement of photons. (B) Wavefunction
2, 3 for an electron in a one-dimensional box.

2 in a planar waveguide
for quantum levels n = 1,



MANIFESTATIONS OF QUANTUM CONFINEMENT

Nano Plasmonics
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Size Dependence of Optical Properties. Quantum confinement produces a blue shift in the bandgap as well as appearance
of discrete subbands corresponding to quantization along the direction of confinement.
As the dimensions of confinement increase, the bandgap decreases; hence the interband transitions shift to longer
wavelengths, finally approaching the bulk value for a large width.

Increase of Oscillator Strength. Quantum confinement produces a major modification in the density of states both for valence
and conduction bands. The oscillator strength of an optical transition for an interband transition depends on the joint density of
states of the levels in the valence band and the levels in the conduction bands, between which the optical transition occurs.

New Intraband Transitions. In quantum-confined structures, there are sub-bands characterized by the different quantum
numbers (n =1, 2, .. .)These new transitions are in IR and have been utilized to produce inter sub-band detectors and lasers,

the most interesting of which are quantum cascade lasers

Increased Exciton Binding. Quantum confinement of electrons and holes also leads to enhanced binding between them and
thereby produces increased exciton binding energy. Thus, excitonic resonances are very pronounced in quantum-confined
structures and, in the strong confinement conditions, can be seen even at room temperature.

Increase of Transition Probability in Indirect Gap Semiconductor. In the quantum-confined structures, confinement of
electrons produces a reduced uncertainty Ax in its position and, consequently, produces a larger uncertainty Ak in its quasi-
momentum. Confinement, therefore, relaxes the quasi-momentum Ak selection rule, thus allowing enhanced emission to be

observed in porous silicon and silicon nanoparticles.

Confinement increases the apparent energy gap
of a semiconductor nanocrystal

——i

Figure 2. Schematic of the effect of the decreased size of the box on tha
incressad anargy gap of a semiconductar quartum dot, and the resultant
lurninescent color change fram bulk matenials {eft) to small nanoarystals {right).

Table 4.2. Optics of Quantum Confined Semiconductors

Optical Transitions

Absorption

Luminescence

Interband:

Transition between
modified valence
and conduction

bands

Intraband
(Inter-sub-band):

Photoluminescence:

Optically excited

Transition between emission
quantized sub-bands
of a band (e.g..

conduction band)

Electroluminescence:

Emission generated
by recombination
of electrically
injected electrons
and holes
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Propagation Through a Classically Forbidden Zone: Tunneling = mm—m—

In a classical picture, the photons and electrons are completely confined in the regions of confinement.

For photons, it is seen by the ray optics for the propagating wave.

Similarly, classical physics predicts that, once trapped within the potential energy barriers where the energy E of an electron is
less than the potential energy V due to the barrier, the electron will remain completely confined within the walls.

However, the wave picture does not predict so.
The field distribution of light confined in a waveguide extends beyond the boundaries of the waveguide.

Photon leakage Electron leakage
ny | ny<n, This light leakage generates an electromagnetic field
c /\ {\ /\ called evanescent wave.
S
2 AN |
J -5 U \/ E, = E; exp(—/d,)
X [
E| V=E .
X In an analogous fashion, an electron shows
Photons Electrons a leakage throm_Jgh region§ where E < V. _
The wavefunction extending beyond the box into the
Figure 2.5. Schematic representation of leakage of photons and electrons into classically en- region of V > E decays exponentially, just like the
ergeticallv forbidden recions. : . - evanescent wave for confined light.
The transmission probability is
Vo
E —— I 0 T = qge 2™ kisequal to 2mE)"/h.
\ 3
—_—7
V=0 Electron
tunneling
barrier Pholtlz_)n
tunneling
Electrons barer’ PHOTONS

Figure 2.6. Schematics of electron and photon tunneling through a barrier.



NANOSCALE OPTICAL INTERACTIONS

Table 2.2. Methods for Nanoscale Localization of Electromagnetic Field
Nanoscale localization
Lateral Nanoscopic Localization — NSOM, SNOM

| |

|
| | Metal - \

Evanescent wave Surface plasmon fim \
| e Optical e
| | }nea-lield Sptieal
. . . . Aperture near-field
Total internal reflection Optical waveguide f k
|
Apertureless confinement a nanoscopic Confinement by an aperture
tip to enhance local field near-field propagation

Axial Nanoscopic Localization - Evanescent Wave Axial Nanoscopic Localization - Surface Plasmon Resonance

0, <0,
92 = E)c
Oa > G)c
@c = critical angle

GLASS PRISM np

«———INDEX MATCHING FLUID
I \ I:: GLASS SUBSTRATE
THIN METAL FILM gy

"~DIELECTRIC FILM gp

The penetration depths d,, for the visible light are 50—-100 nm. ,{;Ep = (w/c) [(e,e,)/(e, + & d}]l.-"z

d, = N[4mn, {sin*Q — (ny/n;)*} %]
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Localization Under a Periodic Potential: Bandgap I —

Both photons and electrons show an analogous behavior when subjected to a periodic potential.
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Figure 2.7. Schematic representation of an electronic crystal (/eff) and a photonic crystal (right).

The solution of the Schrodinger equation for the energy of electrons, now subjected to the periodic potential V, produces a
splitting of the electronic band: the lower energy band is called the valence band, the higher energy band is called the conduction
band. These two bands are separated by a “forbidden” energy gap, the width of which is called the bandgap.

In the case of a photonic crystal, the eigenvalue equation for photons can be used to calculate the dispersion relation o versus k.
A similar type of band splitting is observed for a photonic crystal, and a forbidden frequency region exists between the two bands,
similar to that between the valence and the conduction band of an electronic crystal, which is often called the photonic bandgap.
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Figure 2.8, Schematics of electron energy in (a) direct bandgap (e.g., GaAs, InP, CdS) and Figure 2.9. Dispersion curve for a one-dimensional photonic crystal showing the lowest en-

(b) indirect bandgap (e.g., Si, Ge, GaP) semiconductors. ergy bandgap.



Some basics

Maxwell's Equations

Matrix Theory of Multilayer Optics: Transfer Matrix and Scattering Matrix




Maxwell's Equations

(In Free Space) Maxwell's Equations

o€

Virg= B ; 2,
€ ot . vz'l!—-l.—z‘a—g:()l
OH Vx(VxE&)=V(V-E)-V2E c: Ot
VxE=—p >
ot 1
VV | fff i 8 i V €ollo
(In a medium) Maxwell's Equations - (In a Linear, Nondispersive, Homogeneous, and Isotropic Medium)
Vx:}{:f?_jz D= ¢c€ +P vxi}{zt;%_f V%—lﬁ—o
ot B = peH + M ) 2ot
VXEI—?)-? T:COXS (’:)t e 1
V«D=10 D=€c€ e=¢€(l+x) V-E=0 NGT
N B =1 B = uH V- H=10



Maxwell's Equations

(In a inhomogeneous Medium) > € = €(r) - position dependent

oD €o 1 82K
VxH=Gr —— Vx(2VxH)=-575;
OB 1 82€
VxE=—""——" % i ST
ot GVX(VXS) 2 or
V-D=0 B
€

V.e€=10
V:-e€ = eV-E+Ve-E,
V-&E=—(1/e)Ve- &

(In an Anisotropic Medium) > p. — Z €0 Xij &3

J

(o ¢]

(In a Dispersive Medium) > P(t) = (n/ x(t —t') E(') dt” €ox(t) > impulse response function
—00

€oX (V) > transfer function = FT of y(t)

x(v) = /:OG x(t) exp(—j2mvt) dt

00



Maxwell's Equations
For monochromatic electromagnetic waves

(In a source-free Medium) -

Vg == @
ot YV xH= 3D
VxE = _9B E(r,t) = Re{E(r) exp(jwt)} . V xE = —juwB
& H(r,t) = Re{H(r) exp(jwt)} V-D=0
V= =il o
V:B=0.

(In a Linear, Nondispersive, Homogeneous, source-free, and Isotropic Medium)

V x H = jweE
V xE = —jwuH D = €E V2U + k*U =0 - Helmholtz Equation
V-E=0 B = uH k=nk, =u/elf

V:H=0.

ko =6t

(In a Inhomogeneous medium) - Generalized Helmholtz Equations
l](l') V % (V' % K= %E~

Vxnr)VxH]= —H



Matrix Theory of Multilayer Optics: Transfer Matrix and Scattering Matrix

the complex amplitudes of the forward and backward waves

Wave-Transfer Matrix: through the boundaries (PORTs) of a multilayered medium

(+) (+)

7 2

i 1
- : i Ir fa
Port-1 M Port-2 u;”| _i[A B i ut? Wave-Transfer Matrix
e P U™ EL cC D | ) (Transmission matrix)
Port-2 Port-1
For a multilayered medium,
- e—4 e ¢ -~
e M = MN . MQM]

- Identical to the ray transfer (ABCD) matrix

Scattering Matrix: the outgoing waves are expressed in terms of the incoming waves

(+) (+)

: U, U,
Port-1 S Port-2 [Ué”} - ltl? T21J [(;IHJ] Port-1

) ‘ <—J' Ul{n) T2 t2 LC_S‘) Port-2

Uy
outgoing incoming

yA

t.

j» I transmission and reflection coefficients from port-I to port-j

- The S matrix of a cascade of elements is not the product of the S matrices of the constituent elements.



Relation between Scattering Matrix and Wave-Transfer Matrix

A B 1 |tigte — TrioTor T
_ . "
" C D] to [ —T12 1]’ (7.1)
'+ AD — B B
s_ [t "2*] ok [ - ] . (7.1-6)
T2 t D = 1 Conversion
Relations

X These equations are not valid in the limiting cases when t,;, =0 or D = 0.

Two Cascaded Systems

t2 r21]

toa T tiatog tiotar T3
et [ 23 32] » tiz = =T+
12 21

Iz 132 1 — 191793 ? 1-— T21T923




Two Cascaded Systems: Airy’s Formulas

If the two cascaded systems are mediated by propagation through a homogeneous
medium,

( d h
U —
Ur'<_‘ \-Ul('” :; ) ’ >U,
2 C » )
. - - e-—_/
Ui uy”
tiotez exp ‘“j(,O tioto T3 €XP (_32(!9
tiz = ( ) , Ti3=Ti2+ - ) ; (7.1-8)
1 — roTa3 €xp (—j2¢) 1 —ra1ro3€xp (—j2¢) Airy's
Formulas

where, @ = nk,d



Conservation Relations for Lossless Media

(+) (+)
_U_', ____Li'i. The incoming and outgoing optical powers must be equal.
lossless ’ .
(+)]2 (—)2 _ (+)]2 (=) |2
U(_, U(-) » IUI ’ + |U'2 ’ . |U2 ‘ & |U1 |
1 £

If the media at the input and output planes have the same impedance and refractive index,
By choosing the incoming amplitudes U,(*) and U,®) to be (1,0), (0.1), and (1,1),

Uéﬂ _ tiz ™ UI(+) » ltli’, — It21| = Itl, ‘T]2| = |T‘21I —— |T|1| |'t|2 + II"Q = ],
U ne ta] U5 tio/ta = —T12/7%;.
From the conversion relation » ID| = |A|l, |C|=|B|, |A*-|B|*=1,
Between M and S det M — C/B* _ A/D* — t19/ta;, |detM|=1.




Lossless Reciprocal Systems

For lossless systems with reciprocal symmetry, namely systems whose transmission/reflection
in the forward and backward directions are identical, we have t,;, =t,, =tandr,;=r, =r.

» It + v =1, t/r=—(t/r)*, arg{t}—arg{r}=+n/2
A=D*, B=C", |A*—-|B* =1, detM=1

= S:[t r], M:[l/t* r/t], (7.1-15)

rt T/ 1/t Lossless Reciprocal System




ONE-DIMENSIONAL PHOTONIC CRYSTALS

From the Generalized Helmholtz equation,

9

n(r) V x (V x E) = % E. One-dimensional (I D) photonic crystals are dielectric structures
Co whose optical properties vary periodically in one direction,
V x [n(r) V x H] = — H. ! ol
4 -n{IJ ; I "-","j T](~+A) *T](~) — (r)/((")

For an ON-AXIS wave traveling along the z axis and polarized in the X direction,

w? d d W
Vxnir) VxH =—-H — ——[I](z)—} H, =—H,

(\._’
(o)

For an OFF-AXIS wave, i.e., a wave traveling in an arbitrary direction in the x-z plane,

S o w? 0 0 o2 w?

(0 0O

for TM off-axis wave

=» Before embarking on finding solutions to these eigenvalue problems,
we first examine the conditions imposed on the propagating modes by
the translational symmetry associated with the periodicity.




Bloch Mode (Block Wave)

On-Axis Bloch Modes

—

l | 1D periodic medium is invariant to translation by the distance A along the axis of periodicity.
[ & == - Optical modes must have the form

< A% U(z) = px(z) exp(—jKz) -> Bloch mode (wave)

=> Px (_Z) is a periodic function of period A

= K:Bloch wavenumber

=» The wave is unaltered by a translation A and altered only a phase factor exp(—/KA)

The Bloch mode is thus a plane wave exp(-jKz) with propagation constant K, modulated by a periodic function p,(z),
which has the character of a standing wave.
Standing
g A T
A A Pk T ToE™
X 1s v I,v\\/ Y S
(ﬂ) SN _: 4 ‘_:' N L i I

| -

Since a periodic function of period A can be expanded in a Fourier series as a superposition of harmonic functions of the
formexp(<smgz), m=0,x |, £ 2, ..., with g = 2n/A
Bloch wave is a superposition of plane waves of multiple spatial frequencies K+mg.

K-g K K+g
(b) Spatial frequency

For a complete specification of all modes, we need only consider values of K in a spatial-frequency interval of width g=2r/A.
Interval [-g/2, /2] = [-n/A, m/A ] : = Flrst Brillouln zone.



B. Matrix Optics of 1D Periodic Media

Each unit cell is a lossless reciprocal system, and represented by a generic unimodular wave-transfer matrix,
And, the medium is a Bragg grating with an infinite number of segments (unit cells).

(+) (+)

Um Urn+ 1
[j( 7{7)
o Moo M [ M, [N My [ M [ m+ll _ M
= o
) ( (7)
Uu, Um+| (Jr: r
L | 1 1 1 m+1
mA (m+DA &

](+) : recurrence relations
Unm

AN

Eigenvalue Problem and Bloch Modes for the 1D periodic medium:

By definition, the modes of the periodic medium are self-reproducing waves after transmission through a distance A,

(+)
[}rn 3 i
U( =]

m-

Form=0, M,

U(+)
1| _ _—j® m . D) .
—e Ik m=1,2,...; & = KA BlochPhase
1 Um
(+) +)
U 0 e U(g
) =€ (-)
Us Uo

M, — [1/t* r/t]

i

} » M, — ¢ 7®I = 0 : Eigen value problem

Eigen values > e 7% = 1(1/t + 1/t*) £ {1 — [3(1/t + 1/t*)]*}1/2 ‘ cos P = Re{%}

AR

. ULEH T/t
Eigenvectors > [ x L._J‘p d 'I_/'t“‘]

0

Example) If the initial layer in the unit cell is a homogeneous medium of refractive index n, and width d,,
then The periodic function P«(Z) associated with the Bloch wave at distance z into this layer is

])K(Z)E‘_sz - Jr((]+)€—j'n1koz i U(S )Gjmk“z, 0<2z<d

2

pi(2) ox [—re=Imkoz 4 (g=3KA _ q) gIMkoz] @itz

0<z< d




Dispersion Relation and Photonic Band Structure for the 1D periodic medium:

The dispersion relation relates the Bloch wavenumber K and the angular frequency w.

i ® = KA K\ 1 -
cos¢)=Re{¥} . t(w) > COS(??T-Q-) _Re{mﬁ} g= 27T/A

=» Dispersion relation (o-K relation)

=>» cos(2nK/g) is a periodic function of K of period g = 2n/4

= It is common to limit the domain of the dispersion relation to a period
with values of K in the interval [-g/2. g/2] or [-/A. ©/A] = (First Brillouin zone)

= Corresponding precisely to limiting the phase ® to [-n. t] > (First Brillouin zone)

< Propagation regime, where |cos @ = [Re{1/t(w)}| < 1

< Photonic bandgap regime, where |Re{1/t(w)}| > 1

""""" » wp = mc/A > Bragg frequency
' where ¢ = ¢,/n and 7 is the average




EXAMPLE 7.2-1.

Periodic Stack of Partially Reflective Mirrors. The dispersion relation

for a wave traveling along the axis of a periodic stack of identical partially reflective lossless mirrors
with intensity reflectance |r|? and intensity transmittance |t|* == 1 — |r|?, separated by a distance A,
is determined directly from Example 7.1-8. Using the results obtained there, namely t = |t|e’¥ with
¢ = nk,A = (w/c)A, in conjunction with (7.2-13), provides the dispersion relation

CcoSs (27r—
g

-]

1

t(w)

}

=)

cos(?w—’i) = l cos('n'i-) '

where g = 27 /A, and wg = cm/A is the Bragg frequency. This result is plotted in Fig. 7.2-4.

Figure 7.2-4 Dispersion diagram of a pe-
riodic set of mirrors, each with intensity
transmiltance [t|> = 0.5, separated by a
distance A. Here, wg = wc¢/A and g =
2w /A. The dotted straight lines represent
propagation in a homogeneous medium for

which w /K = er/(9/2) = &




EXAMPLE 7.2-2. Alternating Dielectric Layers. A periodic medium comprises alternating
dielectric layers of refractive indexes n; and ng, with corresponding widths d; and d, and period
A = d; + d,. This system is the dielectric Bragg grating described in Example 7.1-9 with N = cc.
For a wave traveling along the axis of periodicity, Re{1/t} = Re{A} is given by (7.1-61). Using
the relations ¢, + @2 = ko(n1d; + neds) = 7w/ws and Y; — Y, = (TwW/wg, where wy =
(co/n)(m/A) is the Bragg frequency, 7 = (n1d; + nodz)/A is the average refractive index and
¢ = (n1d1 — nady)/(n,1dy + npdy), (7.2-13) provides the dispersion relation

Ky 1 w " w
005(211'5) e [cos (w;) — |ry12]* cos (WCE)] ; (7.2-19)

where tiots; = 4ninz/(ny +n2)? and [riz|?* = (ng — n1)?/(ny + n2)?.

An example of this dispersion relation is plotted in Fig. 7.2-5 for dielectric materials withn; = 1.5
and n, = 3.5, and d, = d,. As with the periodic stack of partially reflective mirrors considered in
Example 7.2-1, the photonic bandgaps are centered at the frequencies wg and its multiples, and occur
at either the center of the Brillouin zone (K = 0) or at its edge (K = g/2). In this case, however, the
frequency region surrounding w = 0 admits propagating modes instead of a forbidden gap. Dielectric
materials with lower contrast have bandgaps of smaller width, but the bandgaps exist no matter how
small the contrast.

w o
;
2w :~
- _ - Figure 7.2-5 Dispersion diagram of an
w3 [ Photonic band ol D al!ematmg-layer periodic dielectric medium
e el with ny = 1.5 and ny = 3.5, and dy = d.
S ,,.r‘" Here, wg = mc,/An and g = 27/A. The
It . dotted straight lines represent propagation in
. 1 a homogeneous medium of mean refractive
obt Lt index 7, so that w/K = ws/(g/2) =
—8/2 0 K 8/2 Co/ﬁ =c



Phase and Group Velocities

phase velocity w/K,

group velocity v

effective refractive index neg = coK/w

= dw/dK,

effective group index N = ¢odK/dw

For alternating-layer dielectric periodic medium :

Band

edges

w [ - n
. : / :
wa "‘l‘“ i ekl $ - weeK \ Photonic bandgap E'
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Figure 7. 2-6 Frequency pen'dé‘hce of the effectwe refractwc mdex Tefi, Which detcrmmes the

At low freguencies (long
wavelengths) the material
behaves as a homogeneous
medium with the average
refractive index (n.4 ~7).

For the mode at the bottom of
the upper band, greater energy
is localized in the layers with
the lower refractive index.

The mode at the top of the lower
band, has greater energy in the
dielectric layers with the higher
refractive index.

As the edges of the bandgap
are approached, from below
or above, this index increases
substantially, so that the
group velocity is much
smaller, i.e., optical pulses
are very slows near the

edges of the bandgap.




Off-Axis Dispersion Relation and Band Structure

cos(KA) = Re{l/t(w)] :The same equation to the case of on-axis, but now Re{l/t(w)}
depends on the angles of incidence within the layers of each
segment and on the state of polarization (TE or TM).

1 (11 + np)? 9o T o (R — 7y)? ax o
Red — p = ——— cos + e 8 = 3 7.1-62
{t} i, (P1 + P2) i (P1— @2) ( )
where ¢, = mnk,d,cosb, and P, = mngk,dzcosfy; Ny = nycosf; and g = ngpcosh,
for TE polarization; and n; = n;secf; and ny = nysecf; for TM polarization.
TM larization TE polarization
po po _ n, n2 S e

Oblique TM wave
Figure 7.2-7 Projected dispersion diagram d

for an alternating-layer periodic dielectric propagating at the
medium with n;, = 1.5, n, = 3.5, and Brewster angle,

d; = d; = A/2. Here, wg = mc,/An and L 1

g = 2w /A. Photonic bands are shaded (green). fp = tan (ng/nl)
The dashed lines represent fixed angles of i

incidence @, in layer 1, including the Brewster phOtOI”IIC bandgap
angle fg = 66.8°. Points within the region cannot occur at all.

bounded by the light lines w = ek, and
¢ W = cok, represent normal-to-axis waves.

Whether there exists a frequency range over which propagation is forbidden at all angles of incidence 6, and
@, and for both polarizations (Complete Photonic Bandgap) ?

= Complete photonic bandgaps cannot exist within 1 D periodic structures!! = 2D or 3D structure is needed.



Omnidirectional Reflection

Under certain conditions and within a specified range of angular frequencies, the periodic medium acts
as a perfect mirror, totally reflecting waves incident from any direction and with any polarization!

TE polarization

Figure 7.2-10 Projected dispersion di-
agram for an alternating-layer dielectric
medium with n; = 1.5, np, = 3.5, and
d, = dy = A/2. The dotted lines (red)
are light lines for a homogeneous medium
with refractive index n = 1. In the spectral
band between w, and w,, the medium acts
as a perfect omnidirectional reflector for all
polarizations. A similar band is shown at
higher angular frequencies.

The red dashed line the w — &, region that can be accessed by waves entering from the homogeneous

This region is thus bounded by the line w = (¢,/n)k; (k. = (w/c,)nsin@) (n=1Iin this figure)



