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Abstract

The energy density associated with an electromagnetic wave passing through a medium, in which both the permittivity and
the permeability are dispersive and absorptive, is derived. The energy density formula is applied to the calculation of the energy
transport velocity in a left-handed material. © 2002 Elsevier Science B.V. All rights reserved.
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In a medium with no dispersion or losses ( € and u are real and frequency-independent),
the time averaged electromagnetic energy density is given by (assuming harmonic time dependence)
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When the medium is dispersive, e=¢(w) and y=u(w), such that the imaginary parts are not very small in
comparison with their real parts, the average energy density (“effective EM energy density’) reduces to
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Let’s drive this effective energy density



When the medium is dispersive, e=g(w) and u=u(w), but € and y are assumed as purely real,

such that the imaginary parts of ¢(w) and u(w) are very small in comparison with their real parts,
the average energy density is
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For a field consisting of monochromatic components assuming harmonic time dependence at o,
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When the imaginary parts of e=¢(w) and y=u(w), become large, we need another approach.

From the Lorentz model of the electric and magnetic polarizations under an oscillating EM fields,
the equations of motion of the two polarizations are,
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w, (wy) :the resonance frequency of the electric (magnetic) dipole oscillators,
I, (l}): the damping frequency
w, ( F) : a measure of the interaction strength between the oscillators and the electric (magnetic) field.

the electric susceptibility y,, defined by P= ;{i,gg}_f
The relative permittivity (relative dielectric constant) and the relative magnetic permeability are given by

(Hz F 2
E((U‘} — 1 —I_ He = 1 —I_ 7 ".np .F'-L({U} — 1 —I_ Am = ]. — u}{:]

w: —w- —il.w

w? — wy + i I



Poynting’s theorem: Ez—V-S—J-E W:E(E-DJrH-B), S=ExH

= Conservation of energy for the electromagnetic field
=> Relation of the time derivative of the energy density, W to the energy flow and the rate at which the fields do work.
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From Maxwell’s equations,
the surface integral of the Poynting vector can be expressed as, (= Poynting’s theorem)
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where, the energy density W is defined by
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For harmonic time dependence the time average of the average energy density is
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Expressing the polarization and the magnetization in terms of the electric and magnetic fields,
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In the case of no magnetic dispersion (u’= 1, u”=0)
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As an example of the application of the general energy density expression of,
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Let’s evaluate the velocity of energy transport in a composite material which is left-handed over
a band of frequencies.

From the dispersion relation of EM waves, the group velocity in a non-absorbing medium is
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On the other hand, the exact definition of the velocity in any medium is

S
Vg = (—l)f’W ( p = +1 for a right-handed medium, —1 for a left-handed one)

The average power flow is obtained from the complex Poynting vector by o,
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(Griffith) 8.1.2 Poynting's Theorem

In Chapter 2, we found that the work necessary to assemble a static charge distribution ]
(against the Coulomb repulsion of like charges) is (Eq. 2.45)
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Likewise, the work required to get currents going (against the back emf) is (Eq. 7.34)
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Therefore, the total energy stored in electromagnetic fields is
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=>» Let’s derive this total energy stored in EM fields more generally
in the context of the energy conservation law for electrodynamics.

= “Energy conservation law for electrodynamics”: Poynting Theorem



Energy Conservation and Poynting's Theorem

Suppose we have some charge and current configuration which, at time t, produces fields E and B. ]

In the next instant, dt, the charges move around a bit.
- How much work, dW, is done by the electromagnetic forces acting on these charges in the interval dt ?

According to the Lorentz force law, the work done on a charge q is
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E . J > the work done per unit time, per unit volume, or, the power delivered per unit volume.
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= This is “Work-Energy Theorem" or “Energy Conservation Theorem” of Electrodynamics.



Poynting's Theorem and Poynting Vector
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= Poynting's theorem
= Work-Energy Theorem or Energy Conservation Theorem of Electrodynamics.
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Poynting's theorem says
= “the work done on the charges by the electromagnetic force is equal to the decrease
in energy stored in the field, less the energy that flowed out through the surface.”

The energy per unit time, per unit area, transported by the fields is called the Poynting vector:
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S= (E X H) = Poynting vector in linear media
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- S - dais the energy per unit time crossing the infinitesimal surface da
- the energy flux, if you like (so S is the energy flux density).



Poynting's Theorem and Poynting Vector
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The work W done on the charges by the fields will increase their mechanical energy (kinetic, potential, or whatever).

- If we let u,,..;, denote the mechanical energy density,
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- If we let u,,, denote the electromagnetic energy density,
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=>» The charge density is replaced by the energy density (mechanical plus electromagnetic),
=>» the current density is replaced by the Poynting vector.

= Compare it with the continuity equation, expressing conservation of charge: V-]

=>» Therefore, Poynting’s theorem represents the flow of energy
in in exactly the same way that J in the continuity equation describes the flow of charge.



Poynting’s Theorem is the “Work-energy theorem” or “Conservation of Energy”
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Total energy stored in the EM field

“The work done on the charges by the electromagnetic force
is equal to the decrease in energy stored in the field,
less the energy that flowed out through the surface” .
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ﬁ =-V-S—-E.J = differential version of Poynting's theorem



Poynting’s theorem  —*=-V-S-E-J

S=ExH

Let’s prove it directly from Maxwell’s equations
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For J =0 (in free space),
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