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In a medium with no dispersion or losses ( ε and μ are real and frequency-independent), 
the time averaged electromagnetic energy density is given by (assuming harmonic time dependence)
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When the medium is dispersive, ε=ε(ω) and μ=μ(ω), such that the imaginary parts are not very small in 
comparison with their real parts, the average energy density (“effective EM energy density”) reduces to 

Total energy densities stored in 
Electric and Magnetic fields
for dispersive media

Let’s drive this effective energy density 



When the medium is dispersive, ε=ε(ω) and μ=μ(ω), but  ε and μ  are assumed as purely real, 

For a field consisting of monochromatic components assuming harmonic time dependence at 0,

     ( ) ( )1 1 1Re Re
2 2 2t

t

d d
W W E D B H E E H H

d d
   
 

   
           

   

From the Lorentz model of the electric and magnetic polarizations under an oscillating EM fields,
the equations of motion of the two polarizations are, 

ωr (ω0)  : the resonance frequency of the electric (magnetic) dipole oscillators, 
Γe (Γh) :  the damping frequency 
ωp ( F) : a measure of the interaction strength between the oscillators and the electric (magnetic) field.

The relative permittivity (relative dielectric constant) and the relative magnetic permeability are given by

such that the imaginary parts of ε(ω) and μ(ω) are very small in comparison with their real parts, 
the average energy density is
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When the imaginary parts of ε=ε(ω) and μ=μ(ω), become large, we need another approach.



Poynting’s theorem: 

 Conservation of energy for the electromagnetic field
 Relation of the time derivative of the energy density, W to the energy flow and the rate at which the fields do work.
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From Maxwell’s equations, 
the surface integral of the Poynting vector can be expressed as, ( Poynting’s theorem)

where, the energy density W is defined by

Rate of energy loss by 
leakage across its surface

Rate of energy loss by 
Dissipation in the volume

Rate of change of the energy 
stored within the volume.



Expressing the polarization and the magnetization in terms of the electric and magnetic fields,

For harmonic time dependence the time average of the average energy density is

In the case of no magnetic dispersion (μ’ = 1, μ” = 0)

We have arrived!



The average power flow is obtained from the complex Poynting vector by

As an example of the application of the general energy density expression of, 

Let’s evaluate the velocity of energy transport in a composite material which is left-handed over 
a band of frequencies.

From the dispersion relation of EM waves, the group velocity in a non-absorbing medium is

On the other hand, the exact definition of the velocity in any medium is

For plane waves

Negative group velocity

( p = +1 for a right-handed medium, −1 for a left-handed one)



(Griffith) 8.1.2  Poynting's Theorem

In Chapter 2, we found that the work necessary to assemble a static charge distribution
(against the Coulomb repulsion of like charges) is (Eq. 2.45)

Energy of Continuous
Charge Distribution

Likewise, the work required to get currents going (against the back emf) is (Eq. 7.34)

Energy of steady 
Current flowing

Therefore, the total energy stored in electromagnetic fields is

Let’s derive this total energy stored in EM fields more generally 
in the context of the energy conservation law for electrodynamics.

 “Energy conservation law for electrodynamics”: Poynting Theorem



Energy Conservation and Poynting's Theorem
Suppose we have some charge and current configuration which, at time t, produces fields E and B.
In the next instant, dt, the charges move around a bit.
 How much work, dW, is done by the electromagnetic forces acting on these charges in the interval dt ?

According to the Lorentz force law, the work done on a charge q is

 the work done per unit time, per unit volume, or, the power delivered per unit volume.

Ampere-Maxwell law 

and Faraday's law 

 Poynting's theorem

 This is “Work-Energy Theorem" or “Energy Conservation Theorem” of Electrodynamics.



Poynting's Theorem and Poynting Vector

 Poynting's theorem 
 Work-Energy Theorem or Energy Conservation Theorem of Electrodynamics.

The first integral on the right is the total energy stored in the fields 

The second term evidently represents the rate at which energy is  
carried out of V, across its boundary surface, by the fields.

Poynting's theorem says 
 “the work done on the charges by the electromagnetic force is equal to the decrease 

in energy stored in the field, less the energy that flowed out  through the surface.”

The energy per unit time, per unit area, transported by the fields is called the Poynting vector:

 S . da is the energy per unit time crossing the infinitesimal surface da
 the energy flux, if you like (so S is the energy flux density).

 Poynting vector

Poynting's theorem 
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  S E H  Poynting vector in linear media



Poynting's Theorem and Poynting Vector

The work W done on the charges by the fields will increase their mechanical energy (kinetic, potential, or whatever).

 If we let umech denote the mechanical energy density,

 Compare it with the continuity equation, expressing conservation of charge:

 differential version of Poynting's theorem

 The charge density is replaced by the energy density (mechanical plus electromagnetic), 
 the current density is replaced by the Poynting vector. 

Therefore, Poynting’s theorem represents the flow of energy 
in in exactly the same way that J in the continuity equation describes the flow of charge.
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 If we let uem denote the electromagnetic energy density,



Poynting’s Theorem is the “Work-energy theorem” or “Conservation of Energy”

“The work done on the charges by the electromagnetic force 
is equal to the decrease in energy stored in the field, 
less the energy that flowed out through the surface” .
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 differential version of Poynting's theorem



Poynting’s theorem
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Let’s prove it directly from Maxwell’s equations

: Poynting's theorem
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