Localized surface plasmons (Particle plasmons)

(“Plasmons in metal nanostructures”, Dissertation, University of Munich by Carsten Sonnichsen, 2001)
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Rayleigh scattering

Quasi-static approximation — Rayleigh scattering by a small particle

(“Scattering of Electromagnetic Waves: Theories and Applications”, Leung Tsang, Jin Au Kong, Kung-Hau Ding, 2000 John Wiley & Sons, Inc.

This approach effectively means that a region in space is investigated which is much smaller than the wavelength of light,
so the electromagnetic phase is constant throughout the region of interest.

For small metal particles with diameters below 40 nm, this proves to be a reasonable simplification.
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The polarization per unit volume inside the particle is
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The dipole moment of the particleis 7 = v,Pint Where v, is the volume of the particle.
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Remember!! ) ) ) A. Insulator (solids)

Clausius-Mossotti Relation

Polarization of a solid

« Susceptibility: --------------ooooo- > B > N,e,
Z ) = .
gOE l_ lz N aJ I
J
« Limit of low atomic concentration:
...or weak polarizability: = Z N,a, 11
pretty good for gasses and glasses J

Clausius-Mossotti

* By definition: =1+ y

g=
- Rearranging I gives T g’?o Z N,e, II1

« Conclusion: Dielectric properties of solids related to atomic polarizability

» This is very generalll

= The Polarizability of a solid with volume V given by the Clausius-Mossotti relation is
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Rayleigh scattering

Rayleigh Theory for metal = dipole surface-plasmon resonance of a metal nanoparticle

(“Plasmons in metal nanostructures”, Dissertation, University of Munich by Carsten Sonnichsen, 2001)
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The polarizability a of the metal sphere is P
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The scattering and absorption cross-section are then
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U ‘.3 Homework!
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“Frohlich condition”
Scattering and absorption exhibit the plasmon resonance where, £/, = —2 — Re[gp (a))} +2¢,, =0

For free particles in vacuum, resonance energies of 3.48 eV for silver (near UV) and 2.6 eV for gold (blue) are calculated.

When embedded in polarizable media, the resonance shifts towards lower energies (the red side of the visible spectrum).



Rayleigh Theory : Scattering by elliptical particles

a) prolate (cigar-shaped) sheroid (a > b =c¢), b) oblate (pancake-shaped) sheroid (a =b > ¢)

The polarizability a; of such a spheroidal particle along the axis i is given by
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L;: a geometrical factor related to the shape of the particle.

Geometrical factor L
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Mie scattering

Beyond the quasi-static approximation : Mie scattering Theory

For particles of larger diameter (> 100 nm in visible), the phase of the driving field significantly changes over the particle volume.
Mie theory =» valid for larger particles than wavelength, from smaller particles than the mean free-path of its oscillating electrons.
=>» Mie calculations for particle shapes other than spheres are not readily performed.

The spherical symmetry suggests the use of a multipole extension of the fields, here numbered by n.
The Rayleigh-type plasmon resonance, discussed in the previous sections, corresponds to the dipole mode n = 1.

“Frohlich condition”
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In the Mie theory, the scattering and extinction efficiencies are calculated by:
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o k: wave vector, r: particle radius, N: refractive index,
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" . . (“Plasmons in metal nanostructures”, Dissertation, University of Munich by Carsten Sonnichsen, 2001)
and a,,, b, the Mie coefficients, which are calculated by:
' ' . (# Needs : definition of the (real) refractive index of the medium Mmed and

the (complex ) refractive index of the particle material HNparticle [w]

I (7 ; i Provideas : Mie coefficienta a, b and
r”-t,i"” (nt ;r)l""” (;1‘) - ?-,l!” (1‘)?—;‘”(?]‘?1‘) scattering , extinetion and absorbtion efficiencieas Qaseca, Qext , Qabs
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n — n - i y(n ,x ] = (Sqrt [Pi / (2x)]) BesselY [n+1/2, x] (* spherical Bessel function *)
-u':-n (?n I)g’( (:1‘} _ ”15” (1*}71,_-',1*: (-ﬂ-?. I‘} hi[n , x ] := j[n, x] +1 y[n, x] (* spherical Hankel function of first kindx)
n ‘ h2[n , = ] :=j[n, x] - & y[n, x] (+ opherical Hankel function of second kind+)
pei[n , x ] :=xj[n, x] (* Riccarti -Bessel -Funktion *)
- — AT AT iz = xbl[a, Riccarti -Bessel -Funkti
with m = VeEr = —'\'1.1&1‘Lir:lc;’f—'\'111|:di11111 fo, = ]o=xhiin, xl v Hicess = o8

peidev [n , x ] := Derivative[0, 1] [psi] [n, %]

xidev [n_, x ] = Derivative([0, 1] [xi] [n, ]

(mpei[n, mx] peidev [n, x] - pei [n, x] peidev [n, m x])
(mpei[n, mx] xidev [n, x] - xi[n, x] peidev [n, mx])
( pei[n, m x] peidev [n, x] - m pei [n, x] peidev [n, m x])
( pei[n, m x] xidev [n, x] -m xi[n, x] peidev [n, m x])
X[w , r ] :=wrHNmed /197 (+ w in &V, r in nmx*)

For the first (n=1) TM mode of Mie’s formulation is Ml ] = ppaxeicte [v] /1ved
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MATHEMATICA®™ script to caleulate Mie coefficients
x(= Tl sphere /\g)



Mie scattering

For a 60 nm gold nanosphere embedded in a medium with refractive index n = 1.5.
(use of bulk dielectric functions (e.g. Johnson and Christy, 1972))
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The red-shift observed for increasing size is partly due to increased damping and to retardation effects.
The broadening of the resonance is due to increasing radiation damping for larger nanospheres.
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Influence of the refractive index of the embedding medium Resonance energy for a 40 nm gold nanosphere
on the resonance position and linewidth of the particle embedded in water (n = 1.33) with increasing
plasmon resonance of a 20 nm gold nanosphere. thickness d of a layer with refractive index n = 1.5.

Calculated using the Mie theory.



measurement

Experimental measurement of particle plasmons

SNOM images gold nanodisks

Scanning near-field microscopy(SNOM)
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Plasmon Damping (Plasmon life time) in metal nanoparticles

C. Sdnnichsen, et. al, “Drastic Reduction of Plasmon Damping in Gold Nanorods”, PRL, 88, 077402 (2002).

photon particle plasmon electron-hole pair
P intraband | | £ The nonradiative decay occurs
radiative r’%“u\' ~excitation | o | 2 via excitation of electron-hole pairs
! [=] . P . . . .
decay TR \nterband  ErT TS either within the conduction band (intraband excitation)
o excitation I § or between the d band and the conduction band (interband excitation).
d-band|| S
Radiative (left) and nonradiative (right) decay
40nm
Dephasing times, directly relate to the plasmon lifetime, T, can be deduced from Ja
the measured homogeneous linewidths I
T2 =172 l |ightlenerg-;y [eV'

Quality factor of the resonance Q = E,. /I
Dephasing time decreases with increasing particle diameter, possibly due to increased radiation damping

Gold diameters (150 nm)
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E. J. Heilweil™” and R. M. Hochstrasser 4762 J. Chemn. Phys. 82 (11), 1 June 1985

TABLE L. Summary of plasmon decay theories and parameters.

p—— p——

I

s ——

Description Expression Half-width (cm "} Lifetime* {s) Ref.
1 Total damping assuming 7r = Vmel 1500 [obs) J.0x 10— 16
homogeneous line shape This
work
2 Width arising from
conductivity expression Al = €y + Mnfe/ 20 1400  (calc) T.6% 10~1* 16
for €, for Ag spheres 1157 {obs)
3 Drude free electron
gas—dc conductivity rr=1/6we g 1140 9.3x10°" 15
for bulk Au 22
4 Generalized free 2 3123
electron gas model Al = Elm,) —L 1407 7.5x107" 1-23,
for w—0 A |~ wp 25,26
5 Quantum mechanical Results for R = 50 A 750 (calc) L4x 10~ 21
maodel for energy silver particles 1250 {obs) 16
transfer to electrons embedded in glass
6 Radiation damping Ade e, \JEm ( R? 150  (Au) 7.2x 107" 2
by photon emission Ze, +€ \A%L ) 34 {Agl 3IX10~"
7 Radiation damping
for metal spheres— e = /R 0} 46 (Au) 2.3x 107" 7
Golden Rule approach 965  |Ag) Lixio—™ 2
8 Radiative lifetime
from absorption spectrum 1/ =3% 10" %12 v}, feld In v) 13 R 1o-" 28
This work
9 Radiative quantum
yield and photoacoustic =Ty /Ty ~02 - ves 24
study of Ag films 27

*Expression in 1 used to interconvert widths and lifetimes.




Interaction between particles

V4 \ an isolated sphere is symmetric, so the

\V / polarization direction doesn’t matter.
y W LONGITUDINAL:
| ) || restoring force reduced by coupling to neighbor
) -~ & - Resonance shifts to lower frequency

TRANSVERSE:
} restoring force increased by coupling to neighbor

Y ¥ MY ' - Resonance shifts to higher frequency
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Plasmon Chains

» Spheres are resonant dipoles
« All dipoles are coupled

* Phase

 Radiation & ohmic damping
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changes over the array

Corresponding vacuum wavelength (nm)

540 471 418 377 343

RONT SPHERE

BACK SPHERE
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Opti?:al Frecfusency (rasd/s)

For plane wave incidence:

« Strong fields localized on individual spheres

* Location of strongest field depends on A

Nanolithography with a tunable mask !



