2.1 The Electric Field

2.1.1 Introduction

The fundamental problem that electromagnetic theory hopes to solve is this:
→ **What force** do the **source charges** \((q_1, q_2, \ldots)\) exert on the **test charge** \((Q)\)?
→ In general, **both the source charges and the test charge are in motion**.

The solution to this problem is facilitated by the **principle of superposition**
→ The interaction between any two charges is **completely unaffected by the others**.
→ To determine the force on \(Q\), we can first compute the force \(F_1\), due to \(q_1\) alone (ignoring all the others); then we compute the force \(F_2\), due to \(q_2\) alone; and so on.
→ Finally, we take the vector sum of all these individual forces: \(F = F_1 + F_2 + F_3 + \ldots\)

To solve the force on \(Q\) using the superposition principle sounds very easy, BUT,
→ the force on \(Q\) depends **not only on the separation distance** \(r\) **between the charges**,
→ it also depends on **both their velocities and on the acceleration** of \(q\).

→ **Moreover**, electromagnetic fields travels at the speed of light, so the position, velocity, and acceleration that \(q\) **had** at some earlier time, affect the force at present.

To begin with, **consider the special case of ELECTROSTATICS**
→ **All the source charges are STATIONARY**
→ **The test charge may be moving.**
2.1.2 Coulomb's Law

What is the force on a test charge Q due to a single point charge q which is at *rest* a distance r away?

![Diagram of a charge Q and a point charge q with vectors r and r']

The experimental law of Coulomb (1785)

$$\mathbf{F} = \frac{1}{4\pi \epsilon_0} \frac{qQ}{r^2} \hat{r}$$

- $\epsilon_0 = 8.85 \times 10^{-12} \frac{C^2}{N \cdot m^2}$: permittivity of free space
2.1.3 The Electric Field

If we have *several* point charges \(q_1, q_2, \ldots, q_n \), at distances \(\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_n \) from \(Q \), the total force on \(Q \) is evidently

\[
F = F_1 + F_2 + \ldots = \frac{1}{4\pi \epsilon_0} \left(\frac{q_1 Q}{\mathbf{r}_1^2} \mathbf{\hat{r}}_1 + \frac{q_2 Q}{\mathbf{r}_2^2} \mathbf{\hat{r}}_2 + \ldots \right)
\]

\[
= \frac{Q}{4\pi \epsilon_0} \left(\frac{q_1}{\mathbf{r}_1^2} \mathbf{\hat{r}}_1 + \frac{q_2}{\mathbf{r}_2^2} \mathbf{\hat{r}}_2 + \frac{q_3}{\mathbf{r}_3^2} + \ldots \right)
\]

\[
F = QE
\]

\[
E(\mathbf{r}) \equiv \frac{1}{4\pi \epsilon_0} \sum_{i=1}^{n} \frac{q_i}{\mathbf{r}_i^2} \mathbf{\hat{r}}_i
\]

\(E \) is called the **Electric Field** of the source charges.

\(E(\mathbf{r}) \) is the **force per unit charge** that would be exerted on a test charge, if you were to place one at \(P \).

Notice that it is a function of position \((\mathbf{r}) \), because the separation vectors \(\mathbf{r} \) depend on the location of the field point \(P \).

It makes no reference to the test charge \(Q \).
2.1.4 Continuous Charge Distributions

If the charge is distributed continuously over some region, the sun becomes an integral:

\[E(r) = \frac{1}{4\pi \varepsilon_0} \int \frac{1}{r^2} \hat{r} \, dq \]

→ If the charge is spread out along a line with charge-per-unit-length \(\lambda \),

\[dq = \lambda \, dl' \quad \rightarrow \quad E(r) = \frac{1}{4\pi \varepsilon_0} \int \frac{\lambda(r')}{r^2} \hat{r} \, dl' \]

→ If the charge is smeared out over a surface with charge-per-unit-area \(\sigma \),

\[dq = \sigma \, da' \quad \rightarrow \quad E(r) = \frac{1}{4\pi \varepsilon_0} \int_S \frac{\sigma(r')}{r^2} \hat{r} \, da' \]

→ If the charge fills a volume with charge-per-unit-volume \(\rho \),

\[dq = \rho \, d\tau' \quad \rightarrow \quad E(r) = \frac{1}{4\pi \varepsilon_0} \int_V \frac{\rho(r')}{r^2} \hat{r} \, d\tau' \]

@ Please note carefully the meaning of \(\mathbf{r} \) in these formulas.

→ Originally \(\mathbf{r} \) stood for the vector from the source charge \(q_i \) to the field point \(r \).
→ Correspondingly, \(\mathbf{r} \) is the vector from \(dq \) (therefore from \(dl', da' \), or \(d\tau' \)) to the field point \(r \).
2.1.2 Coulomb's Law

Problem 2.7 Find the electric field a distance z from the center of a spherical surface of radius R, which carries a uniform surface charge density σ.

\[
E(r) = \frac{1}{4\pi\epsilon_0} \int \frac{\sigma(r')}{r'^2} \, da'
\]

\[
dq = \sigma \, ds = \sigma R^2 \sin \theta \, d\theta \, d\phi
\]

\[
r^2 = R^2 + z^2 - 2Rz \cos \theta
\]

\[
E(r) = E_z \hat{z};
\]

\[
E_z = |E(r)| \cos \psi
\]

\[
E_z = \frac{1}{4\pi\epsilon_0} \int \frac{\sigma R^2 \sin \theta \, d\theta \, d\phi \sin(z - R \cos \theta)}{(R^2 + z^2 - 2Rz \cos \theta)^{3/2}} \, d\phi = 2\pi
\]

\[
= \frac{1}{4\pi\epsilon_0} (2\pi R^2 \sigma) \int_0^\pi \frac{(z - R \cos \theta) \sin \theta}{(R^2 + z^2 - 2Rz \cos \theta)^{3/2}} \, d\theta
\]

Let $u = \cos \theta$; $du = -\sin \theta \, d\theta$;

\[
\begin{align*}
\theta &= 0 \Rightarrow u = +1 \\
\theta &= \pi \Rightarrow u = -1
\end{align*}
\]

\[
= \frac{1}{4\pi\epsilon_0} (2\pi R^2 \sigma) \left[\frac{1}{\sqrt{R^2 + z^2 - 2Rzu}} \right]_{-1}^{1} = \frac{1}{4\pi\epsilon_0} \frac{2\pi R^2 \sigma}{z^2} \left\{ \frac{(z - R)}{|z - R|} - \frac{(-z - R)}{|z + R|} \right\}
\]

For $z > R$ (outside the sphere), $E_z = \frac{1}{4\pi\epsilon_0} \frac{4\pi R^2 \sigma}{z^2} = \frac{1}{4\pi\epsilon_0} \frac{\sigma}{z^2}$, so $E = \frac{1}{4\pi\epsilon_0} \frac{q}{z^2} \hat{z}.$

For $z < R$ (inside), $E_z = 0$, so $E = 0$

Look! The integrals involved in computing E may be formidable. ➔ Gauss's Law makes it simple!
2.2.1 Field Lines, Flux, and Gauss's Law

Field lines:

- The magnitude of the field is indicated by the density of the field lines:
 - It's strong near the center where the field lines are close together,
 - It's weak farther out, where they are relatively far apart.
 - The field lines begin on positive charges and end on negative ones;
 - They cannot simply terminate in midair, though they may extend out to infinity;
 - They can never cross.

Field flux: \(\Phi_E = \int_S \mathbf{E} \cdot d\mathbf{a} \) → the "number of field lines" passing through \(S \).

- \((\mathbf{E} \cdot d\mathbf{a}) \) is proportional to the number of lines passing through the infinitesimal area
- The dot product picks out the component of \(d\mathbf{a} \) along the direction of \(\mathbf{E} \),
- It is only the area in the plane perpendicular to \(\mathbf{E} \).

- The number of field lines is proportional to the magnitude of a charge.

- Therefore, this suggests that
 - "the flux through any closed surface is a measure of the total charge inside"
 - \textbf{This is the essence of Gauss's Law.}
Flux and Gauss's Law

In the case of a point charge q at the origin, the flux of E through a sphere of radius r is

$$\Phi_E = \oint_E E \cdot da = \int \frac{1}{4\pi \epsilon_0} \left(\frac{q}{r^2} \hat{r} \right) \cdot (r^2 \sin \theta d\theta d\phi \hat{r}) = \frac{1}{\epsilon_0} q$$

- The flux through any surface enclosing the charge is q/ϵ_0.

Now suppose a bunch of charges scattered about.
- According to the principle of superposition, the total field is the (vector) sum of all the individual fields:

$$E = \sum_{i=1}^{n} E_i$$

$$\Phi_E = \oint E \cdot da = \sum_{i=1}^{n} \left(\oint E_i \cdot da \right) = \sum_{i=1}^{n} \left(\frac{1}{\epsilon_0} q_i \right) \quad \Rightarrow \quad \oint_{S} E \cdot da = \frac{1}{\epsilon_0} Q_{enc}$$

Gauss’s Law

By applying the divergence theorem:

$$\oint_{S} E \cdot da = \int_{V} (\nabla \cdot E) d\tau$$

$$Q_{enc} = \int_{V} \rho d\tau \quad \Rightarrow \quad \int_{V} (\nabla \cdot E) d\tau = \int_{V} \left(\frac{\rho}{\epsilon_0} \right) d\tau \quad \Rightarrow \quad \nabla \cdot E = \frac{1}{\epsilon_0} \rho$$

Gauss's law in differential form
2.2.2 The Divergence of E

Let’s calculate the divergence of E directly from the Coulomb’s Law of

\[E(\mathbf{r}) = \frac{1}{4\pi \epsilon_0} \int_{V} \frac{\rho(\mathbf{r}')}{r^2} \hat{\mathbf{r}} \, d\tau' \rightarrow \nabla \cdot E \quad \text{(divergence in terms of } \mathbf{r}) \]

Since the \(\mathbf{r} \)-dependence is contained in \(\mathbf{r} = \mathbf{r} - \mathbf{r}' \), we have

\[
\nabla \cdot E = \frac{1}{4\pi \epsilon_0} \int \nabla \cdot \left(\frac{\hat{\mathbf{r}}}{r^2} \right) \rho(\mathbf{r}') \, d\tau'
\]

\[
\nabla \cdot \left(\frac{\hat{\mathbf{r}}}{r^2} \right) = 4\pi \delta^3(\mathbf{r})
\]

\[
\nabla \cdot E = \frac{1}{4\pi \epsilon_0} \int 4\pi \delta^3(\mathbf{r} - \mathbf{r}') \rho(\mathbf{r}') \, d\tau' = \frac{1}{\epsilon_0} \rho(\mathbf{r})
\]

\[
\nabla \cdot E = \frac{\rho(\mathbf{r})}{\epsilon_0}
\]

\(\rightarrow \text{This is Gauss's law in differential form} \)
2.2.3 Applications of Gauss's Law \(\oint_S \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\varepsilon_0} Q_{\text{enc}} \)

When symmetry permits, it’s the quickest and easiest way of computing electric fields.

Example 2.2 Find the field outside a uniformly charged solid sphere of radius \(R \) and total charge \(q \). (Remember the Prob. 2.7)

⇒ Draw a spherical surface at radius \(r > R \) ➔ "Gaussian surface"

\[
\oint_S \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\varepsilon_0} Q_{\text{enc}}
\]

\[
\int_S |\mathbf{E}| \, d\mathbf{a} = |\mathbf{E}| \int_S d\mathbf{a} = |\mathbf{E}| 4\pi r^2 = \frac{1}{\varepsilon_0} q
\]

\[
\mathbf{E} = \frac{1}{4\pi \varepsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}
\]

Gauss's law is always true, but it is not always useful.

⇒ Symmetry is crucial to this application of Gauss's law.

1. **Spherical symmetry.** Make your Gaussian surface a concentric sphere.
2. **Cylindrical symmetry.** Make your Gaussian surface a coaxial cylinder.
3. **Plane symmetry.** Use a Gaussian "pillbox," which straddles the surface.
Applications of Gauss's Law \(\oint_S \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\varepsilon_0} Q_{\text{enc}} \)

Example 2.3 A long cylinder carries a charge density that is proportional to the distance from the axis: \(\rho = ks \), for some constant \(k \).

\(\Rightarrow \) The enclosed charge is

\[Q_{\text{enc}} = \int \rho \, d\tau = \int (ks') (s' \, ds' \, d\phi \, dz) = 2\pi kl \int_0^5 s'^2 \, ds' = \frac{2}{3} \pi kl s^3 \]

Symmetry dictates that \(\mathbf{E} \) must point radially outward,

\[\oint \mathbf{E} \cdot d\mathbf{a} = \int |\mathbf{E}| \, d\mathbf{a} = |\mathbf{E}| \int d\mathbf{a} = |\mathbf{E}| 2\pi l \]

While the two ends contribute nothing (here \(\mathbf{E} \) is perpendicular to \(d\mathbf{a} \)). Thus,

\[|\mathbf{E}| 2\pi l = \frac{1}{\varepsilon_0} \frac{2}{3} \pi kl s^3 \rightarrow \mathbf{E} = \frac{1}{3\varepsilon_0} ks \hat{s} \]

Example 2.4 An infinite plane carries a uniform surface charge \(\sigma \).

\(\Rightarrow \) Draw a "Gaussian pillbox," and apply Gauss's law to this surface:

\[Q_{\text{enc}} = \sigma A \]

By symmetry, \(\mathbf{E} \) points away from the plane (upward for points above, downward for points below)

\[\oint \mathbf{E} \cdot d\mathbf{a} = 2A |\mathbf{E}| = \frac{1}{\varepsilon_0} \sigma A \rightarrow \mathbf{E} = \frac{\sigma}{2\varepsilon_0} \hat{n} \]
2.2.4 The Curl of E

Consider the electric field from a point charge \mathbf{q} at the origin:

$$\mathbf{E} = \frac{1}{4\pi \varepsilon_0} \frac{q}{r^2} \mathbf{\hat{r}}$$

Now let’s calculate the line integral of this field from some point \mathbf{a} to some other point \mathbf{b}:

$$\int_{a}^{b} \mathbf{E} \cdot d\mathbf{l}$$

In spherical coordinates, $d\mathbf{l} = dr \mathbf{\hat{r}} + r d\theta \mathbf{\hat{\theta}} + r \sin \theta d\phi \mathbf{\hat{\phi}}$

$$\mathbf{E} \cdot d\mathbf{l} = \frac{1}{4\pi \varepsilon_0} \frac{q}{r^2} dr
ightarrow \int_{a}^{b} \mathbf{E} \cdot d\mathbf{l} = \frac{1}{4\pi \varepsilon_0} \frac{q}{r^2} dr = -\frac{1}{4\pi \varepsilon_0} \frac{q}{r} \bigg|_{r_a}^{r_b} = \frac{1}{4\pi \varepsilon_0} \left(\frac{q}{r_a} - \frac{q}{r_b} \right)$$

The integral around a closed path is evidently zero (for then $r_a = r_b$):

$$\oint \mathbf{E} \cdot d\mathbf{l} = 0 \Rightarrow \text{Applying Stokes' theorem, } \nabla \times \mathbf{E} = 0$$

If we have many charges, the principle of superposition states that the total field is a vector sum of their individual fields:

$$\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2 + \ldots,$$

$$\nabla \times \mathbf{E} = \nabla \times (\mathbf{E}_1 + \mathbf{E}_2 + \ldots) = (\nabla \times \mathbf{E}_1) + (\nabla \times \mathbf{E}_2) + \ldots = 0$$

$$\nabla \times \mathbf{E} = 0 \Rightarrow \text{For any static charge distribution whatever}$$