
Chapter 7. 
Time-Varying Fields and 

Maxwell’s Equations



Electrostatic & Time Varying Fields
• Electrostatic fields

• In the electrostatic model, electric field and magnetic fields are not related 
each other. 
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Faraday’s law
• A major advance in EM theory was made by M. Faraday in 1831 

who discovered experimentally that a current was induced in a 
conducting loop when the magnetic flux linking the loop changed.

 electromotive force (emf):   VdV
dt


 



Faraday’s law
• Fundamental postulate for electromagnetic induction is

• The electric field intensity in a region of time-varying magnetic flux 
density is therefore non conservative and cannot be expressed as 
the negative gradient of a scalar potential.

   dV
dt t
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• The negative sign is an assertion that the induced emf will cause a 
current to flow in the closed loop in such a direction as to oppose the 
change in the linking magnetic flux  Lentz’s law
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7-2.3. A moving conductor in a static magnetic field

• Charge separation by magnetic force

• To an observer moving with the conductor, there is no apparent 
motion and the magnetic force can be interpreted as an inducted 
electric field acting along the conductor and producing a voltage.

• Around a circuit, motional emf or flux cutting emf
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A moving conductor in a static magnetic field

• Example 7-2

(a) Open voltage V0 ?
(b) Electric power in R
(c) Mechanical power required to move the sliding bar
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A moving conductor in a static magnetic field

• Example 7-3. Faraday disk generator
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Magnetic force & electric force
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When a charge q0 moves parallel to the current on a wire, 
the magnetic force on q0 is equivalent to the electric force on q0.

At the rest frame on wire At the moving frame on charge 

I

I

'E

 To observer moving with q0 under E and B fields, there is no apparent motion.
But, the force on q0 can be interpreted as caused by an electric field, E’.



7-2.4. A moving circuit in a time-varying magnetic field

   E E u B

u

 To observer moving with q0 under E and B fields, there is no apparent motion.
But, the force on q0 can be interpreted as caused by an electric field, E’.

Now, consider a conducting circuit with contour C and surface S 
moves with a velocity u under static E and B fields.
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Changing in magnetic flux due to the circuit movement produces an emf, V:

On the other hand, the moving circuit experiences an emf, V’, due to E’:
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Note that 

Therefore, we need to prove that 



• Time-rate of change of magnetic flux through the contour
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• In going from C1 to C2, the circuit covers a region bounded by S1, S2, and S3
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         E B
dV V V
dt

• Therefore, the emf induced in the moving circuit C is equivalent 
to the emf induced by the change in magnetic flux  

   E  = 
C

emf V dl

: same form as not in motion.
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A moving circuit in a time-varying magnetic field

• Example 7.3
– Determine the open-circuit voltage of the Faraday disk generator
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(Example 7-4)  Find the induced emf in the rotating loop under 

(a) when the loop is at rest with an angle .

(b) When the loop rotates with an angular velocity ω about the x-axis
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7-3. How Maxwell fixed Ampere’s law?

• We now have the following collection of two curl eqns. and two divergence eqns.

• Charge conservation law  the equation of continuity

• The set of four equations is now consistent with the equation of continuity?
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Maxwell’s equations
• A term ∂ρv /∂t must be added to the equation.

• The additional term ∂D/∂t means that a time-varying 
electric field will give rise to a magnetic field, 
even in the absence of a free current flow (J=0).

• ∂D/∂t is called displacement current (density).
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Maxwell’s equations
• Maxwell’s equations

• These four equations, together with the equation of continuity and 
Lorentz’s force equation form the foundation of electromagnetic 
theory. These equations can be used to explain and predict 
all macroscopic electromagnetic phenomena.

• The four Maxwell’s equations are not all independent
– The two divergence equations can be derived from the two curl 

equations by making use of the equation of continuity
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Maxwell’s equations
• Integral form & differential form of Maxwell’s equations

Differential form Integral form Significance

Faraday’s law

Ampere’s law

Gauss’s law

No isolated 
magnetic charge
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Maxwell’s equations
• Example 7-5

– Verify that the displacement current = conduction current in the wire.
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Maxwell’s equations
• Example 7-5

– Determine the magnetic field intensity at a distance r from the wire

 1 2,
Two typical open surfaces with rim  may be chosen: 
(a) a planar disk surface b  a curved surface 
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7-5. Electromagnetic Boundary Conditions
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Electromagnetic Boundary Conditions
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Both static and time-varying electromagnetic fields satisfy the same boundary conditions: 

 The tangential component of an E field is continuous across an interface.

 The tangential component of an H field is discontinuous across an interface
where a surface current  exists.

 The normal component of an B field is continuous across an interface.

 The normal component of an D field is discontinuous across an interface
where a surface charge exists.



Boundary conditions at an interface between two lossless linear media

Between two lossless media ()  with  = 0, and S = 0, Js = 0

1 1
1 2

2 2

1 1
1 2

2 2

1 2 1 1 2 2

1 2 1 1 2 2

t
t t

t

t
t t

t

n n n n

n n n n

DE E
D

BH H
B

D D E E

B B H H







 

 

  

  

  

  




 
   

 

BD E H,   



In a perfect conductor ( infinite, for example, supercondiuctors),

Medium 1(dielectric)
Medium2 

(perfect metal)
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Boundary conditions at an interface between dielectric and perfect conductor
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Boundary conditions
• Table



7-4. Potential functions
• Vector potential

• Electric field for the time-varying case.
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Wave equation for vector potential A
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 (Lorenz condition, or gauge)0

Non-homogeneous wave equation for vector potential A
1traveling wave with a velocity of  


(# Show that the Lorentz condition is consistent 
with the equation of continuity. Prob. P.7-12) 



Wave equations for scalar potential V
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The Lorentz condition uncouples the wave equations for A and for V.

The wave equations reduce to Poisson’s equations in static cases. 



Gauge freedom
• Electric & magnetic field

• Gauge transformation

 Gauge invariance
E & B fields are unchanged if we take any function (x,t) on simultaneously A and V via:

If ,  B remains unchanged.

Thus, if  is further changed to ,    also remains same.
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The Lorentz condition can be converted to a wave equation.



7-6. Solution of wave equations
• The mathematical form of waves 

x

t = t0t = 0

x = upt0
up

f (x, t =0)

   
2 2

2 2 2

1 0 : wave equation,
p

pf x t f f
x u t

f x u t  
  

 
 



Wave equation
• Simple wave

– http://navercast.naver.com/science/physics/1376
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Solution of wave equations from potentials

First consider a point charge at time t, (t)v’, located at a origin. 
Except at the origin, V(R) satisfies the following homogeneous equation ( = 0):
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Solution of wave equations

Now consider a charge distribution over a volume V’ .
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 The potentials at a distance R from the source at time t depend on the values of  and J 
at an earlier time (t- R/u)  Retarded in time

 Time-varying charges and currents generate retarded scalar potential, retarded vector potential.



Source free wave equations 
Maxwell’s equations in source-free non-conducting media (ε, μ, σ=0).

• Homogeneous wave equation for E & H.
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Consider a RLC circuit

Phasor method (exponential representation)
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 (Scalar) phasors that contain amplitude and phase information

but are independent of time t.



Time-harmonic Maxwell’s & wave equations  

• Vector phasors.

• Time-harmonic (cos t) Maxwell’s equations in terms of vector phasors
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Time-harmonic Maxwell’s & wave equations 

Time-harmonic wave equations (nonhomogeneous Helmholtz’s equations)
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Time-harmonic retarded potential
• Phasor form of retarded scalar potential

• Phasor form of retarded vector potential.
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Time-harmonic retarded potential
• Example: Find the magnetic field intensity H and the value of β when = 90
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The EM Waves in lossy media
• If a medium is conducting (σ≠0), a current J=σE will flow

• When an external time-varying electric field is applied to material bodies, 
small displacements of bound charges result, giving rise to a volume density 
of polarization. This polarization vector will vary with the same frequency as 
that of the applied field.

• As the frequency increases, the inertia of the charged particles tends to 
prevent the particle displacements from keeping in phase with the field 
changes, leading to a frictional damping mechanism that causes power 
loss.

• This phenomenon of out of phase polarization can be characterized by a 
complex electric susceptibility and hence a complex permittivity.

• Loss tangent, δc
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The EM Waves in lossy media
• Loss tangent, δc

• Good conductor if

• Good insulator if 

• Moist ground : loss tangent ~ 1.8104@1kHz, 1.810-3 @10GHz
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J

c

E

  




  

 
    

 
  

H E Ec

c

j j
j

j

>>1


<<1


= j
t j

  


 
      

EH J E



The electromagnetic spectrum
• Spectrum of electromagnetic waves


